{ "cells": [ { "cell_type": "markdown", "id": "c61d016f-5e80-4f9c-903a-6e75d204ca26", "metadata": {}, "source": [ "# `mammos_spindynamics` quickstart\n", "\n", "`mammos_spindynamics` provides temperature-dependent spontaneous magnetization values.\n", "\n", "- `db` contains pre-computed materials" ] }, { "cell_type": "code", "execution_count": 1, "id": "5ee47c84-328e-4641-ac89-c061dd7fe804", "metadata": {}, "outputs": [], "source": [ "import mammos_spindynamics" ] }, { "cell_type": "markdown", "id": "c877208d-55ae-42f6-b6ec-da3914828127", "metadata": {}, "source": [ "## Querying the database – `mammos_spindynamics.db`\n", "\n", "Use the following function to get a list of all available materials:" ] }, { "cell_type": "code", "execution_count": 2, "id": "0d4da988-2845-4b30-b463-e0387f33ddcb", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
chemical_formulaspace_group_namespace_group_numbercell_length_acell_length_bcell_length_ccell_angle_alphacell_angle_betacell_angle_gammacell_volumeICSD_labelOQMD_labellabelsource
0Co2Fe2H4P6_3/mmc1942.645345 Angstrom2.645314 Angstrom8.539476 Angstrom90.0 deg90.0 deg120.0 deg51.751119 Angstrom30001Uppsala
1Y2Ti4Fe18P4/mbm1278.186244 Angstrom8.186244 Angstrom4.892896 Angstrom90.0 deg90.0 deg90.0 deg327.8954234 Angstrom30002Uppsala
2Nd2Fe14BP42/mnm1368.78 Angstrom8.78 Angstrom12.12 Angstrom90.0 deg90.0 deg90.0 deg933.42 Angstrom30003https://doi.org/10.1103/PhysRevB.99.214409
3Fe16N2?0nan Angstromnan Angstromnan Angstromnan degnan degnan degnan Angstrom30005Uppsala
4Ni80Fe20Pm-3m2213.55 Angstrom3.55 Angstrom3.55 Angstrom90.0 deg90.0 deg90.0 deg44.738875 Angstrom30006https://doi.org/10.48550/arXiv.1908.08885; spa...
\n", "
" ], "text/plain": [ " chemical_formula space_group_name space_group_number cell_length_a \\\n", "0 Co2Fe2H4 P6_3/mmc 194 2.645345 Angstrom \n", "1 Y2Ti4Fe18 P4/mbm 127 8.186244 Angstrom \n", "2 Nd2Fe14B P42/mnm 136 8.78 Angstrom \n", "3 Fe16N2 ? 0 nan Angstrom \n", "4 Ni80Fe20 Pm-3m 221 3.55 Angstrom \n", "\n", " cell_length_b cell_length_c cell_angle_alpha cell_angle_beta \\\n", "0 2.645314 Angstrom 8.539476 Angstrom 90.0 deg 90.0 deg \n", "1 8.186244 Angstrom 4.892896 Angstrom 90.0 deg 90.0 deg \n", "2 8.78 Angstrom 12.12 Angstrom 90.0 deg 90.0 deg \n", "3 nan Angstrom nan Angstrom nan deg nan deg \n", "4 3.55 Angstrom 3.55 Angstrom 90.0 deg 90.0 deg \n", "\n", " cell_angle_gamma cell_volume ICSD_label OQMD_label label \\\n", "0 120.0 deg 51.751119 Angstrom3 0001 \n", "1 90.0 deg 327.8954234 Angstrom3 0002 \n", "2 90.0 deg 933.42 Angstrom3 0003 \n", "3 nan deg nan Angstrom3 0005 \n", "4 90.0 deg 44.738875 Angstrom3 0006 \n", "\n", " source \n", "0 Uppsala \n", "1 Uppsala \n", "2 https://doi.org/10.1103/PhysRevB.99.214409 \n", "3 Uppsala \n", "4 https://doi.org/10.48550/arXiv.1908.08885; spa... " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mammos_spindynamics.db.find_materials()" ] }, { "cell_type": "markdown", "id": "5b3e8c55-cac6-4741-93e0-0519ea47aee7", "metadata": {}, "source": [ "Use the following function to get an object that contains spontaneous magnetization `Ms` at temperatures `T`:" ] }, { "cell_type": "code", "execution_count": 3, "id": "93351fbd-8af7-4539-b472-01495f3c9b22", "metadata": {}, "outputs": [], "source": [ "results_spindynamics = mammos_spindynamics.db.get_spontaneous_magnetization(\"Co2Fe2H4\")" ] }, { "cell_type": "markdown", "id": "fb249f57-1aea-490a-91df-63217a3faeb0", "metadata": {}, "source": [ "The result object provides a function to plot the data for visual inspection:" ] }, { "cell_type": "code", "execution_count": 4, "id": "e84ad7b4-b91d-4492-a320-7be02b841fbb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHACAYAAABeV0mSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVpZJREFUeJzt3X1czXf/B/DXKd0qURGhlJtLRFIjYRhFzO32YwzDGJdtudm14TLM3Zhr7s3t3Mxlbjfb3M0klpuyWbSQKRUZWauQmyk6n98fdr5Xp86p8805nc45r+fj0WPO5/v5fs/7U815+9wqhBACRERERGbCytgBEBEREekTkxsiIiIyK0xuiIiIyKwwuSEiIiKzwuSGiIiIzAqTGyIiIjIrTG6IiIjIrDC5ISIiIrPC5IaIiIjMCpMbIiIiMisWndycOHECvXv3hqenJxQKBb799lvZzxBC4NNPP0WTJk1gZ2eH+vXr4+OPP9Z/sERERKSTKsYOwJgePnyIgIAAjBw5Eq+88kq5njFhwgQcOXIEn376KVq0aIF79+4hOztbz5ESERGRrhQ8OPMZhUKBb775Bv369ZPKCgoK8OGHH+LLL7/E3bt34e/vj08++QSdO3cGAFy+fBktW7bExYsX8Y9//MM4gRMREZEaix6WKsvIkSNx+vRp7Ny5E4mJifi///s/9OjRAykpKQCA/fv3w9fXFwcOHICPjw8aNGiA0aNHIzc318iRExERWS4mN1qkpqZix44d2LNnDzp27IiGDRviX//6Fzp06IDNmzcDANLS0nD9+nXs2bMHW7duxZYtWxAfH49XX33VyNETERFZLouec1Oac+fOQQiBJk2aqJXn5+fDzc0NAKBUKpGfn4+tW7dK9TZu3IigoCBcuXKFQ1VERERGwORGC6VSCWtra8THx8Pa2lrtmpOTEwCgTp06qFKliloC5OfnBwDIyMhgckNERGQETG60CAwMRGFhIbKystCxY0eNddq3b4+nT58iNTUVDRs2BAAkJycDALy9vSssViIiIvofi14t9eDBA1y9ehXAs2RmyZIl6NKlC1xdXeHl5YWhQ4fi9OnTWLx4MQIDA5GdnY1jx46hRYsW6NmzJ5RKJV544QU4OTlh2bJlUCqVePvtt1GtWjUcOXLEyK0jIiKyTBad3Pz444/o0qVLifI33ngDW7ZswZMnTzBv3jxs3boVN2/ehJubG9q1a4fZs2ejRYsWAIBbt27h3XffxZEjR1C1alVERERg8eLFcHV1rejmEBERESw8uSEiIiLzw6XgREREZFaY3BAREZFZsbjVUkqlErdu3YKzszMUCoWxwyEiIiIdCCFw//59eHp6wsqq9L4Zi0tubt26hfr16xs7DCIiIiqHGzduoF69eqXWMWpyc+LECfznP/9BfHw8MjMzSxxcWdzevXuxZs0aJCQkID8/H82bN8dHH32E7t276/yezs7OAJ59c6pVq/a8TSAiIqIKkJeXh/r160uf46UxanLz8OFDBAQEYOTIkXjllVfKrH/ixAmEhYXh448/RvXq1bF582b07t0bP/30EwIDA3V6T9VQVLVq1ZjcEBERmRhdppRUmqXgCoWizJ4bTZo3b45BgwZh5syZOtXPy8uDi4sL7t27x+SGiIjIRMj5/DbpOTdKpRL3798vdcO8/Px85OfnS6/z8vIqIjQiIiIyEpNeCr548WI8fPgQAwcO1FpnwYIFcHFxkb44mZiIiMi8mWxys2PHDnz00UfYtWsXatWqpbXetGnTcO/ePenrxo0bFRglERERVTSTHJbatWsX3nzzTezZswfdunUrta6dnR3s7OwqKDIiIiIyNpPrudmxYwdGjBiB7du3o1evXsYOh4iIiCoZo/bcPHjwAFevXpVep6enIyEhAa6urvDy8sK0adNw8+ZNbN26FcCzxGb48OFYvnw5QkJCcPv2bQCAg4MDXFxcjNIGIiIiqlyM2nPzyy+/IDAwUNqjZvLkyQgMDJSWdWdmZiIjI0Oqv27dOjx9+hRvv/026tSpI31NmDDBKPETERFR5VNp9rmpKNznhoiIyPTI+fw2uTk3RERERKVhcvOclkYlY0V0isZrK6JTsDQquYIjIiIismxMbp6TtZUCSzQkOCuiU7AkKhnWVmWfgUFERET6Y5L73FQmkV0bAwCW/N1DE9m1sZTYhDZ0k64XtSI6BYVKgUlhTSo0ViIiIkvA5EYPiiY4q45dRUGhEqEN3RCbmoMV0SlqCY4q8ZnMxIaIiMggOCylJ5FdG8PW2goFhUrYWlth+5gQTA5rojZkVTSx0dSjQ0RERM+PPTd6siI6RUpsCgqVaj02xXt0OFRFRERkOOy50YOiPTLJ8yPUemyK9uhYKxTSUJWm+zn5mIiI6Pmx5+Y5aRpqKtpjcyYtR61HJ7ShGycfExERGRB7bp5ToVJonEMT2bWxNKm4aI9ObGqOlOA0mf69lNiwR4eIiEg/2HPznLT1qKyITpESG009OtYKhdrkY1Uio6rHHh0iIqLyYc+NgZTVo1MoRInJx6q5OuzRISIiKj/23BiIrj06xXtsVKuqyurR4XJyIiIizZjcVCC5k4+5nJyIiEg+DktVILmTj7mcnIiISD723FSg8k4+5nJyIiIi3bHnphLgcnIiIiL9Yc9NJWDo5eScfExERJaEyU0lVlqPzpm0HMSm5pQ5+TjE11Xr8zlcRURE5ojJTSWmj+XkoQ3d1a4VfYaqV4eIiMicMLkxMXKXkwOQVl6p6nICMhERmTNOKDYx5VlODoC7HxMRkcVgz42JKe/k48lhTaTeHE5AJiIic8bkxkyU1qMDALGp2dz9mIiILAKHpczEpDJ6W86k5XL3YyIisgjsuTFzcicgc/djIiIydey5MXPc/ZiIiCwNe27MHHc/JiIiS8PkxkJx92MiIjJXTG4sFHc/JiIic8XkhiT63P2Yw1VERGQsCiGEMHYQFSkvLw8uLi64d+8eqlWrZuxwKpWlf08O1pSUDNlwRmOPjqp3ZklUstqKq+1jQko8g0NVRERUXnI+v7laiiTa9srRNvm4aK8N98ohIqLKgsNSVCa5ux9r2yuHQ1VERFQRmNxQmcoaRlLtflx80z+urCIiImPgsBSVm7YJyKrNAIvulaNaWcXhKiIiMjQmN1RuZe1+XCiExpVVqgRHl6Mdlv49vEVERKQrJjdUbrpMQC56UCfwvwSHRzsQEZGhcM4N6VVZe+VMDmsi9ebwaAciIjIEJjekV3JXVvFoByIi0jcmN6RX5VlZBfBoByIi0h8mN1QheLQDERFVFB6/QBWCRzsQEdHz4PELVOnwaAciIqooHJYio+LRDkREpG9MbsioeLQDERHpG4elqFLi0Q5ERFReRk1uTpw4gd69e8PT0xMKhQLffvttmffExMQgKCgI9vb28PX1xdq1aw0fKFU4Hu1ARETlZdTk5uHDhwgICMCqVat0qp+eno6ePXuiY8eOOH/+PP79738jMjISX3/9tYEjpYrGox2IiKi8jDrnJiIiAhERETrXX7t2Lby8vLBs2TIAgJ+fH3755Rd8+umneOWVVwwUJVUWPNqBiIh0YVITiuPi4hAeHq5W1r17d2zcuBFPnjyBjY2NkSKjiqCvox2Y2BARmTeTSm5u374NDw8PtTIPDw88ffoU2dnZqFOnTol78vPzkZ+fL73Oy8szeJxkGPo42qG0kSiurCIiMg/lSm6ePHmC27dv49GjR6hZsyZcXbUvxdU3hUL900m1wXLxcpUFCxZg9uzZBo+LjEfu0Q48s4qIyLzpPKH4wYMHWLduHTp37gwXFxc0aNAAzZo1Q82aNeHt7Y0xY8bg7NmzhowVtWvXxu3bt9XKsrKyUKVKFbi5uWm8Z9q0abh37570dePGDYPGSBWvrJVVxScgA9C4sorDVURE5kGnnpulS5di/vz5aNCgAfr06YOpU6eibt26cHBwQG5uLi5evIiTJ08iLCwMISEhWLlyJRo31v+HRLt27bB//361siNHjiA4OFjrfBs7OzvY2dnpPRaqPLQNI2k72gF4ltxwI0AiIvOkU3ITGxuL48ePo0WLFhqvt2nTBqNGjcLatWuxceNGxMTE6JTcPHjwAFevXpVep6enIyEhAa6urvDy8sK0adNw8+ZNbN26FQAwbtw4rFq1CpMnT8aYMWMQFxeHjRs3YseOHbo0gyxMWROQlx9NKbERYNHrAIeriIhMkU7JzZ49e3R6mJ2dHcaPH6/zm//yyy/o0qWL9Hry5MkAgDfeeANbtmxBZmYmMjIypOs+Pj44dOgQJk2ahM8++wyenp5YsWIFl4GTRmX1tGjbCBDgsnEiIlOmEKoZuRZCzpHpZJ6KJy3Fe2eWRCVLSU+IrytCG7pr3VCQw1VERBVDzue37NVSjx8/xsqVK3H8+HFkZWVBqVSqXT937pzcRxJVGLkbAXK4iojI9MhObkaNGoWoqCi8+uqraNOmjdYl2ESVkdyNAAEOVxERmRrZyc3Bgwdx6NAhtG/f3hDxEBlUeTYCnBzWREpwuLqKiKjyk31wZt26deHs7GyIWIiMRttwVdFeG03DVTyUk4io8pGd3CxevBhTpkzB9evXDREPkVGUNlw1OaxJqcNV3AyQiKhykT0sFRwcjMePH8PX1xeOjo4lNs/Lzc3VW3BEFUVfw1VMbIiIjE92cjN48GDcvHkTH3/8MTw8PDihmMyanNVVPJSTiKhykJ3cxMbGIi4uDgEBAYaIh6hSkbu6isvGiYiMT3Zy07RpU/z111+GiIWo0inPcBWXjRMRGZfs5GbhwoV47733MH/+fLRo0aLEnBvu+kuWoKzhKi4bJyIyHtnJTY8ePQAAXbt2VSsXQkChUKCwsFA/kRFVYjyUk4io8pKd3Bw/ftwQcRCZFB7KSURUeclObjp16mSIOIjMQmmHcnKXYyKiiiF7Ez8i0oy7HBMRVQ6ye26ISDMeyklEVDkwuSHSE+5yTERUOeg8LPXgwQNDxkFktuQMV5W1y/HSv+sTEZF2Oic37u7uiIiIwJo1a3Dz5k1DxkRkVuQcyqkU4DwcIqLnpHNyc+XKFfTs2RNff/01fH198cILL2Du3LlITEw0ZHxEJm9SGcNMquGq5PkR0p43PG2ciKj8FEIIIfeme/fu4dChQ/juu+9w+PBh1KhRA3369EHfvn3RqVMnWFtbGyJWvcjLy4OLiwvu3bvH3ZTJqLQlLapy4H/DVSG+rght6K4xueGycSKyBHI+v8u1FNzFxQWDBw/Gzp07kZ2djXXr1kGpVGLkyJGoWbMmvvzyy3IFTmRJyhquslYouGyciKgcnnu1VJUqVRAeHo7w8HCsXLkS58+fx9OnT/URG5FZ4y7HRESGUa5hKVPGYSmq7Erb5Rh4Nh9HlfQwsSEiS2HwYSkiMgy5uxwXKkWJoaqiz+LScSKyRNzEj6gSkbvL8dlruYhNzVGrA/DEcSKybExuiCqR8uxyHNrQjXNxiIiK0Etyc+fOHWzbtg0bN25EQkKCPh5JREVoG64CoJbgqI5wCG3oxmXjRGSxnmvOzdGjRzF48GB4enpi0aJF6NSpk77iIqIiylo2/kIDV2moylqhQGxqDpeNE5HFkt1zk5GRgc2bN2Pz5s148OAB7ty5g927d+OVV14xRHxEhNKHq1RDUUXn4nCoiogsmc49N7t370Z4eDj8/Pxw8eJFLF++HLdu3YKVlRX8/PwMGSMRlaJo4qI6wiE2NUdKcJpM/56JDRFZFJ17boYMGYIPPvgAX3/9NZydnQ0ZExHpqKy5OEV3OWZiQ0SWQueem1GjRmH16tXo0aMH1q5dizt37hgyLiLSQWlzcUIbuqntcvza+jjuiUNEFkHn5Gb9+vXIzMzEW2+9hR07dqBOnTro27cvhBBQKpWGjJGItNB24viK6BTEpuaoDVWdScvl+VREZBFkrZZycHDAG2+8gZiYGFy4cAHNmjWDh4cH2rdvjyFDhmDv3r2GipOIdFTaLscA1BIcTjQmInP03GdLKZVKHDx4EBs3bsT333+P/Px8fcVmEDxbiszd0r97YbT36GTjTFquNFwV4uuK0Ibu3BeHiCo1OZ/fej04MysrC7Vq1dLX4wyCyQ0R0GT699JE43deaqSx94a9OkRUmej94My4uDid3rhWrVp4+PAhLl26pFN9Iqp4xffEASAdzMnhKiIyBzolN8OHD0dYWBh2796NBw8eaKyTlJSEf//732jUqBHOnTun1yCJSD807Ymj2uxP9Wfui0NEpk6nfW6SkpKwbt06zJw5E6+//jqaNGkCT09P2Nvb486dO/jtt9/w8OFDDBgwAFFRUfD39zd03EQkU1l74kwOayL15thaW6FQKbAiOoVzcYjI5Miec3Pu3DmcPHkS165dw19//QV3d3cEBgaiS5cucHV1NVScesM5N2Sp5E40Dm3oJi0n51wcIjI2OZ/fss+Wat26NVq3bl3u4IjIOMrqZTmTlislLKoEhmdUEZEpkp3cEJF5KWu4SpXgrDp2FQWFSiY2RFTpMbkhsnClHeGguv7LtTs8o4qITIasHYqJyPxoO8IBeJbgWFsp1JaOD9lwRmNdnk9FRJUFkxsi0qr40nHVJOPiCQ7PpyKiyoTJDRFppGkuzvYxISUSHE4yJqLKplzHL0RHRyM6OhpZWVklTgTftGmT3oIzBC4FJ9JNaUvHh2w4g9jUHGmoiokNERma3o9fKGr27NkIDw9HdHQ0srOzcefOHbUvuVavXg0fHx/Y29sjKCgIJ0+eLLX+l19+iYCAADg6OqJOnToYOXIkcnJyZL8vEZWutLk428eEaNzwTxPOxSGiiiZ7tdTatWuxZcsWDBs27LnffNeuXZg4cSJWr16N9u3bY926dYiIiEBSUhK8vLxK1D916hSGDx+OpUuXonfv3rh58ybGjRuH0aNH45tvvnnueIhIN8XPpzp7LRexqc/+kaFtwz8ioooiu+emoKAAoaGhennzJUuW4M0338To0aPh5+eHZcuWoX79+lizZo3G+mfOnEGDBg0QGRkJHx8fdOjQAWPHjsUvv/yil3iIqGyazqeKTc2R9sPh4ZtEZGyyk5vRo0dj+/btz/3GBQUFiI+PR3h4uFp5eHg4YmNjNd4TGhqK33//HYcOHYIQAn/88Qe++uor9OrV67njIaKyadvwr3iCw8M3iciYZA9LPX78GOvXr8fRo0fRsmVL2NjYqF1fsmSJTs/Jzs5GYWEhPDw81Mo9PDxw+/ZtjfeEhobiyy+/xKBBg/D48WM8ffoUffr0wcqVK7W+T35+PvLz86XXeXl5OsVHRCXJ3fCPh28SkTHI7rlJTExEq1atYGVlhYsXL+L8+fPSV0JCguwAFAr1fTGEECXKVJKSkhAZGYmZM2ciPj4ehw8fRnp6OsaNG6f1+QsWLICLi4v0Vb9+fdkxEtEzcjf8O3stV22oSoX74hCRIZVrKbg+FBQUwNHREXv27EH//v2l8gkTJiAhIQExMTEl7hk2bBgeP36MPXv2SGWnTp1Cx44dcevWLdSpU6fEPZp6burXr8+l4ER6VnzIqujhm0VPF+dcHCIqD4OeCl7U77//DoVCgbp168q+19bWFkFBQYiKilJLbqKiotC3b1+N9zx69AhVqqiHbG1tDeBZj48mdnZ2sLOzkx0fEemOh28SUWUie1hKqVRizpw5cHFxgbe3N7y8vFC9enXMnTu3xIZ+ZZk8eTI+//xzbNq0CZcvX8akSZOQkZEhDTNNmzYNw4cPl+r37t0be/fuxZo1a5CWlobTp08jMjISbdq0gaenp9ymEJGelDYXZ3JYE7zQwFVtXxwmNkRkSLJ7bqZPn46NGzdi4cKFaN++PYQQOH36ND766CM8fvwY8+fP1/lZgwYNQk5ODubMmYPMzEz4+/vj0KFD8Pb2BgBkZmYiIyNDqj9ixAjcv38fq1atwnvvvYfq1avjpZdewieffCK3GUSkR6VNClYNRRWdi6NtkjERkT7InnPj6emJtWvXok+fPmrl3333HcaPH4+bN2/qNUB94/ELRBWr+JDVa+vjcCYtV2NPD1dQEZE2Bj1+ITc3F02bNi1R3rRpU+Tm5sp9HBGZMU1zcUIbugNAiVVUXEFFRPoiO7kJCAjAqlWrSpSvWrUKAQEBegmKiMyDprk4qnk4ABCbmg2AuxkTkX7JHpaKiYlBr1694OXlhXbt2kGhUCA2NhY3btzAoUOH0LFjR0PFqhccliKqHFQJDU8WJyJdGHRYqlOnTkhOTkb//v1x9+5d5ObmYsCAAbhy5UqlT2yIqPKI7NqYK6iIyCDKtc+Np6enrFVRRETFcQUVERmKTslNYmIi/P39YWVlhcTExFLrtmzZUi+BEZH50rab8Zm0HGwfE6KxPldREZGudEpuWrVqhdu3b6NWrVpo1aoVFAqFxh2BFQoFCgsL9R4kEZkPbbsZn0nLQWxqDoZsOKOW4BStT0SkC52Sm/T0dNSsWVP6MxFReWnbzXj7mBAM2XAGsak50hAVV1ERUXnIXi114sQJhIaGljjj6enTp4iNjcWLL76o1wD1jauliCo3rqIiIk0MulqqS5cuGjfru3fvHrp06SL3cUREaoqvoipUCrXN/opaEZ2CpVHJFRwhEVV2spMbIQQUipI7iObk5KBq1ap6CYqILFfxVVRnr+WW2M1YVY87GhORJjovBR8wYACAZ5OGR4wYATs7O+laYWEhEhMTERoaqv8IichiaFtFFdrQDUv+7qHhXBwiKovOyY2LiwuAZz03zs7OcHBwkK7Z2toiJCQEY8aM0X+ERGQRtK2iAqCW4Kw6dpVzcYioVDonN5s3bwYANGjQAP/61784BEVEeqVtFZXqdaFS4Jdrd7ijMRGVSfZqKVPH1VJEpqn4KqoQX1eENnTXmORw0z8i8yPn87tcxy989dVX2L17NzIyMlBQUKB27dy5c+V5JBGRVtp3NH62crNogsNN/4hI9mqpFStWYOTIkahVqxbOnz+PNm3awM3NDWlpaYiIiDBEjERkwbTNxVElL0VXUnGiMREB5RiWatq0KWbNmoXBgwfD2dkZv/76K3x9fTFz5kzk5uZi1apVhopVLzgsRWRalv693Fvb8FNsajbOpOVy0z8iMyfn81t2cuPo6IjLly/D29sbtWrVQlRUFAICApCSkoKQkBDk5OQ8V/CGxuSGyPw0mf69NNE4eT57kInMkUF3KK5du7aUwHh7e+PMmTMAnp05ZWFzk4moEii+6Z+23YyJyHLITm5eeukl7N+/HwDw5ptvYtKkSQgLC8OgQYPQv39/vQdIRKRN0Tk2yfMjEOLrqnE3Y1VdHtVAZBlkr5Zav349lEolAGDcuHFwdXXFqVOn0Lt3b4wbN07vARIRaaJp8nBoQ3ecSctV2824eF0iMn/c54aITJK2icaqRCbE1xU732rHFVREZsKgE4p9fX3RqVMnrF27Vu18qezsbLRp0wZpaWnli7qCMLkhMn/FN/xjYkNk+gw6ofjatWs4ffo0OnbsiMzMTKm8sLAQ169flx8tEZGeRXZtLCU2PKqByPLITm4UCgUOHz6MevXqITg4GGfPnjVEXERE5cYVVESWTXZyI4SAk5MT9u7di+HDh6NTp07Ytm2bIWIjIpKt+AqqyWFNsCQqGUM2nNFan6uoiMxLuXpuVBYsWID169djzJgxmDZtml4DIyKSS9tRDaEN3RCbmlMiwVHVt7ZSaHocEZmocvXcFDV06FAcO3YMhw4d0ltQRETlUagUGicPbx8TIiU4PIeKyPzpbSn4H3/8gd9++w2dOnXSx+MMhquliCwXV1ERmS6DrpbSxsPDo9InNkRk2biKisgy6LRDcevWrREdHY0aNWogMDBQbd5NcefOndNbcERE+qRpFRUTHCLzo1Ny07dvX2nDvr59+5aa3BARVUbF59ioXgNggkNkZnj8AhGZPW2ThzmpmMh0GHTOja+vL3JyckqU3717F76+vnIfR0RkcNpWURUqBUIbuqFQWfLfeNz/hsh0lev4hcLCwhLl+fn5+P333/USFBGRPk3S0jNjbaVAbGpOiX1uuP8NkWnTac4NAOzbt0/68w8//AAXFxfpdWFhIaKjo+Hj46Pf6IiIDEiV8BSde8OhKiLTp/OcGyurZ508CoWixEZ+NjY2aNCgARYvXoyXX35Z/1HqEefcEFFx3P+GqPKT8/mtc8+NUqkEAPj4+ODs2bNwd3d/viiJiCqJyK6NserYVe5/Q2QmZM+5SU9PlxKbx48f6z0gIqKKxlPEicyL7ORGqVRi7ty5qFu3LpycnJCWlgYAmDFjBjZu3Kj3AImIDEnbKeJMcIhMl+zkZt68ediyZQsWLVoEW1tbqbxFixb4/PPP9RocEZEhaZo8rFoerinB4fJwItMgO7nZunUr1q9fj9dffx3W1tZSecuWLfHbb7/pNTgiIkPStP+Nanl48f1vuDycyHToPKFY5ebNm2jUqFGJcqVSiSdPnuglKCKiijAprEmJsqLLw0N83QBwJ2MiUyM7uWnevDlOnjwJb29vtfI9e/YgMDBQb4ERERlL0QRHtYqKiQ2R6ZCd3MyaNQvDhg3DzZs3oVQqsXfvXly5cgVbt27FgQMHDBEjEVGF4/JwItMle85N7969sWvXLhw6dAgKhQIzZ87E5cuXsX//foSFhRkiRiKiCsfl4USmS3bPDQB0794d3bt313csRESVQvE5NqrXANiDQ2QCZPfcqBQUFOD3339HRkaG2pdcq1evho+PD+zt7REUFISTJ0+WWj8/Px/Tp0+Ht7c37Ozs0LBhQ2zatKm8zSAiUqNp8nBk18bc/4bIhMjuuUlJScGoUaMQGxurVi6EgEKh0HhiuDa7du3CxIkTsXr1arRv3x7r1q1DREQEkpKS4OXlpfGegQMH4o8//sDGjRvRqFEjZGVl4enTp3KbQUSkkabl4QDU9sEhospN54MzVdq3b48qVapg6tSpqFOnDhQK9T0fAgICdH5W27Zt0bp1a6xZs0Yq8/PzQ79+/bBgwYIS9Q8fPozXXnsNaWlpcHV1lRO2hAdnElF5LP17jxtNw1IrolNQqBQal5YTkX4Y5OBMlYSEBMTHx6Np06blDhB4NqwVHx+PqVOnqpWHh4eX6BVS2bdvH4KDg7Fo0SL897//RdWqVdGnTx/MnTsXDg4OGu/Jz89Hfn6+9DovL++54iYiy2RtpdA476boMBYRVQ6yk5tmzZohOzv7ud84OzsbhYWF8PDwUCv38PDA7du3Nd6TlpaGU6dOwd7eHt988w2ys7Mxfvx45Obmap13s2DBAsyePfu54yUiy1Z07xvVa27uR1Q5yU5uPvnkE3zwwQf4+OOP0aJFC9jY2KhdlzvUU3xYSzV3RxOlUgmFQoEvv/wSLi4uAIAlS5bg1VdfxWeffaax92batGmYPHmy9DovLw/169eXFSMREcDN/YhMhezkplu3bgCArl27qpXLnVDs7u4Oa2vrEr00WVlZJXpzVOrUqYO6detKiQ3wbI6OEAK///47Gjcu+ReMnZ0d7OzsdIqJiKgs3NyPqPKTndwcP35cL29sa2uLoKAgREVFoX///lJ5VFQU+vbtq/Ge9u3bY8+ePXjw4AGcnJwAAMnJybCyskK9evX0EhcRUWk0be7HBIeocpG9Wkqfdu3ahWHDhmHt2rVo164d1q9fjw0bNuDSpUvw9vbGtGnTcPPmTWzduhUA8ODBA/j5+SEkJASzZ89GdnY2Ro8ejU6dOmHDhg06vSdXSxFReWnb3C+0oRu2jwnRWJ+rqIj0w6CrpRITEzWWKxQK2Nvbw8vLS+dhoEGDBiEnJwdz5sxBZmYm/P39cejQIelQzszMTLWNAZ2cnBAVFYV3330XwcHBcHNzw8CBAzFv3jy5zSAikkXb5n5n0nIQm5qDIRvOqCU4XEVFZDyye26srKy0TvgFABsbGwwaNAjr1q2Dvb39cweob+y5IaLyKG2fmyEbziA2NadEjw4nGxPpj5zPb9nJzXfffYcpU6bg/fffR5s2bSCEwNmzZ7F48WLMmjULT58+xdSpUzFo0CB8+umnz9UQQ2ByQ0SGoEpoVHNxmNgQ6ZdBk5s2bdpg7ty5JQ7O/OGHHzBjxgz8/PPP+Pbbb/Hee+8hNTVVfvQGxuSGiAylyfTvpcnGyfMjjB0OkVmR8/kt++DMCxcuSHNiivL29saFCxcAAK1atUJmZqbcRxMRmSxNq6iIyDhkJzdNmzbFwoULUVBQIJU9efIECxculI5kuHnzpta9aoiIzE3ROTbJ8yN4gjiRkcleLfXZZ5+hT58+qFevHlq2bAmFQoHExEQUFhbiwIEDAJ4dkzB+/Hi9B0tEVNloW0UFQONZVERkeOXa5+bBgwfYtm0bkpOTIYRA06ZNMWTIEDg7OxsiRr3inBsi0ieeFk5UMQw6odjUMbkhoorApIdIvwy6iZ9KUlISMjIy1ObeAECfPn3K+0giIrNhbaXQOCzFzf2IDE92cpOWlob+/fvjwoULUCgUUHX8qDb20/XgTCIic6Zp3g039yOqGLJXS02YMAE+Pj74448/4OjoiEuXLuHEiRMIDg7Gjz/+aIAQiYhMU2TXxtLKqSbTv2diQ1RBZCc3cXFxmDNnDmrWrAkrKytYWVmhQ4cOWLBgASIjIw0RIxGRyYrs2lja+8bW2oqJDVEFkJ3cFBYWwsnJCQDg7u6OW7duAXi2id+VK1f0Gx0RkYnj5n5EFU/2nBt/f38kJibC19cXbdu2xaJFi2Bra4v169fD19fXEDESEZmk4nNsVK8B7n1DZEiyk5sPP/wQDx8+BADMmzcPL7/8Mjp27Ag3Nzfs2rVL7wESEZkibu5HZDyyk5uiB2b6+voiKSkJubm5qFGjhrRiiojI0hUqhcbJw6rXhUqL2mKMqEJxEz8iIiKq9Ayyid+oUaN0qrdp0yZdH0lEZFG4azFRxdA5udmyZQu8vb0RGBgIC+vsISLSC+5aTFQxdE5uxo0bh507dyItLQ2jRo3C0KFD4erqasjYiIjMCnctJqoYsubc5OfnY+/evdi0aRNiY2PRq1cvvPnmmwgPDzeZycScc0NExqZKaFR73zCxISqbnM9vWZv42dnZYfDgwYiKikJSUhKaN2+O8ePHw9vbGw8ePHiuoImILAV3LSYyLNk7FKsoFArp4EylUqnPmIiIzBp3LSYyLFnJTX5+Pnbs2IGwsDD84x//wIULF7Bq1SpkZGRIRzIQEZF2RefYJM+PkA7WZIJDpD86TygeP348du7cCS8vL4wcORI7d+6Em5ubIWMjIjIr3LWYqGLoPKHYysoKXl5eCAwMLHXy8N69e/UWnCFwQjERGQv3uSEqP4Ns4jd8+HCTWRFFRFQZlZa4sMeGSH9kbeJHREREVNmVe7UUERERUWXE5IaIyMiWlrJaakV0Cpb+PdmYiHTD5IaIyMhUZ04VT3BUq6usrTjfkUgOnefcEBGRYfDMKSL9YnJDRFQJFE1wVh27yjOniJ6D7GGpL774AgcPHpRef/DBB6hevTpCQ0Nx/fp1vQZHRGRJeOYUkX7ITm4+/vhjODg4AADi4uKwatUqLFq0CO7u7pg0aZLeAyQishQ8c4pIP2QPS924cQONGjUCAHz77bd49dVX8dZbb6F9+/bo3LmzvuMjIrIIxefYqF4D3OCPSC7ZPTdOTk7IyckBABw5cgTdunUDANjb2+Ovv/7Sb3RERBZA25lTPFSTqHxk99yEhYVh9OjRCAwMRHJyMnr16gUAuHTpEho0aKDv+IiIzF6hUmicPKx6XajU6QhAIvqb7OTms88+w4cffogbN27g66+/lk4Gj4+Px+DBg/UeIBGRueOZU0T6pfOp4OaCp4ITERGZHoOcCq5y4sSJUq+/+OKLch9JREREpDeykxtNK6IUiv9tDV5YWPhcARERERE9D9mrpe7cuaP2lZWVhcOHD+OFF17AkSNHDBEjERERkc5k99y4uLiUKAsLC4OdnR0mTZqE+Ph4vQRGRGTplv59aKamScUrolNQqBSlTkYmslR6OxW8Zs2auHLlir4eR0Rk8XhaOFH5yO65SUxMVHsthEBmZiYWLlyIgIAAvQVGRGTpeFo4UfnITm5atWoFhUKB4ivIQ0JCsGnTJr0FRkREPC2cqDxkJzfp6elqr62srFCzZk3Y29vrLSgiIvqfyK6NpcSGp4UTlU32nBtvb2+1r/r16z9XYrN69Wr4+PjA3t4eQUFBOHnypE73nT59GlWqVEGrVq3K/d5ERKaAp4UTyVOuCcUxMTHo3bs3GjVqhMaNG6NPnz46JyVF7dq1CxMnTsT06dNx/vx5dOzYEREREcjIyCj1vnv37mH48OHo2rVrecInIjIZRefYJM+P4GGaRDqQndxs27YN3bp1g6OjIyIjI/HOO+/AwcEBXbt2xfbt22U9a8mSJXjzzTcxevRo+Pn5YdmyZahfvz7WrFlT6n1jx47FkCFD0K5dO7nhExGZDJ4WTlQ+sufczJ8/H4sWLcKkSZOksgkTJmDJkiWYO3cuhgwZotNzCgoKEB8fj6lTp6qVh4eHIzY2Vut9mzdvRmpqKrZt24Z58+aV+T75+fnIz8+XXufl5ekUHxGRsfG0cKLykZ3cpKWloXfv3iXK+/Tpg3//+986Pyc7OxuFhYXw8PBQK/fw8MDt27c13pOSkoKpU6fi5MmTqFJFt9AXLFiA2bNn6xwXEVFlwdPCicpH9rBU/fr1ER0dXaI8Ojoa9evXlx1A0XOpgGf75hQvA56dWTVkyBDMnj0bTZroviPntGnTcO/ePenrxo0bsmMkIiIi0yG75+a9995DZGQkEhISEBoaCoVCgVOnTmHLli1Yvny5zs9xd3eHtbV1iV6arKysEr05AHD//n388ssvOH/+PN555x0AgFKphBACVapUwZEjR/DSSy+VuM/Ozg52dnYyW0lERESmSnZy889//hO1a9fG4sWLsXv3bgCAn58fdu3ahb59++r8HFtbWwQFBSEqKgr9+/eXyqOiojQ+p1q1arhw4YJa2erVq3Hs2DF89dVX8PHxkdsUIiIiMkOykxsA6N+/v1pCUl6TJ0/GsGHDEBwcjHbt2mH9+vXIyMjAuHHjADwbUrp58ya2bt0KKysr+Pv7q91fq1Yt2NvblygnIiIiy1Wu5Obu3bv46quvkJaWhn/9619wdXXFuXPn4OHhgbp16+r8nEGDBiEnJwdz5sxBZmYm/P39cejQIXh7ewMAMjMzy9zzhoiIiKgohSh+SFQZEhMT0a1bN7i4uODatWu4cuUKfH19MWPGDFy/fh1bt241VKx6kZeXBxcXF9y7dw/VqlUzdjhERESkAzmf37JXS02ePBkjRoxASkqK2rELEREROHHihPxoiYhIZ0tL2bxvRXQKlv59gjiRJZOd3Jw9exZjx44tUV63bl2t+9MQEZF+WFspNO5OrNrN2Nqq5FYaRJZG9pwbe3t7jbv8XrlyBTVr1tRLUEREpJlq874lf/fQRHZtrPGYBiJLJju56du3L+bMmSMtA1coFMjIyMDUqVPxyiuv6D1AIiJSVzTBWXXsKgoKlUxsiIqQPSz16aef4s8//0StWrXw119/oVOnTmjUqBGcnZ0xf/58Q8RIRETFRHZtDFtrKxQUKmFrbcXEhqgI2T031apVw6lTp3Ds2DGcO3cOSqUSrVu3Rrdu3QwRHxERabAiOkVKbAoKlVgRncIEh+hv5drnBgBeeukljccdEBGRYRWfY6N6DfBATSKgnMlNdHQ0oqOjkZWVBaVSqXZt06ZNegmMiIhK0jR5WNMkYyJLJju5mT17NubMmYPg4GDUqVNH4wneRERkGIVKoXHysOp1oVLWvqxEZkn2DsV16tTBokWLMGzYMEPFZFDcoZiIiMj0GHSH4oKCAoSGhpY7OCIiIiJDkp3cjB49Gtu3bzdELERERETPTfacm8ePH2P9+vU4evQoWrZsCRsbG7XrS5Ys0VtwRERERHLJTm4SExPRqlUrAMDFixfVrnFyMRERERmb7OTm+PHjhoiDiIiISC9kz7khIiIiqszKtYnf2bNnsWfPHmRkZKCgoEDt2t69e/USGBEREVF5yO652blzJ9q3b4+kpCR88803ePLkCZKSknDs2DG4uLgYIkYiIiIinclObj7++GMsXboUBw4cgK2tLZYvX47Lly9j4MCB8PLyMkSMRERERDqTndykpqaiV69eAAA7Ozs8fPgQCoUCkyZNwvr16/UeIBEREZEcspMbV1dX3L9/HwBQt25daTn43bt38ejRI/1GR0RERCST7AnFHTt2RFRUFFq0aIGBAwdiwoQJOHbsGKKiotC1a1dDxEhERESkM9nJzapVq/D48WMAwLRp02BjY4NTp05hwIABmDFjht4DJCIiIpJD9qngpo6nghOROVoalQxrKwUiuzYucW1FdAoKlQKTwpoYITIi/TDoqeDW1tbIysoqUZ6TkwNra2u5jyMiIj2wtlJgSVQyVkSnqJWviE7Bkr8THyJLIXtYSltHT35+PmxtbZ87ICIikk/VY7MkKll6rUpsJoc10dijQ2SudE5uVqxYAeDZ4Ziff/45nJycpGuFhYU4ceIEmjZtqv8IiYhIJ0UTnFXHrqKgUMnEhiySzsnN0qVLATzruVm7dq3aEJStrS0aNGiAtWvX6j9CIiLSWWTXxlJiY2ttxcSGLJLOyU16ejoAoEuXLti7dy9q1KhhsKCIiKh8VkSnSIlNQaESK6JTmOCQxZE95+b48eOGiIOIiJ5T8Tk2qtcAmOCQRZGd3BQWFmLLli2Ijo5GVlYWlEql2vVjx47pLTgiItKNpsnDmiYZE1kC2cnNhAkTsGXLFvTq1Qv+/v5QKLi8kIjI2AqVQuPkYdXrQqVFbWlGFk72Jn7u7u7YunUrevbsaaiYDIqb+BEREZkeg27iZ2tri0aNGpU7OCIiIiJDkp3cvPfee1i+fLnWzfyIiIiIjEn2nJtTp07h+PHj+P7779G8eXPY2NioXd+7d6/egiMiIiKSS3ZyU716dfTv398QsRARERE9N9nJzebNmw0RBxEREZFeyE5uVP78809cuXIFCoUCTZo0Qc2aNfUZFxEREVG5yJ5Q/PDhQ4waNQp16tTBiy++iI4dO8LT0xNvvvkmHj16ZIgYiYiIiHQmO7mZPHkyYmJisH//fty9exd3797Fd999h5iYGLz33nuGiJGIiIhIZ+XaxO+rr75C586d1cqPHz+OgQMH4s8//9RnfHrHTfyIiIhMj0E38Xv06BE8PDxKlNeqVYvDUkRERGR0spObdu3aYdasWXj8+LFU9tdff2H27Nlo166dXoMjIiIikkv2aqnly5ejR48eqFevHgICAqBQKJCQkAB7e3v88MMPhoiRiIiISGey59wAz3pqtm3bht9++w1CCDRr1gyvv/46HBwcDBGjXnHODRERkemR8/ldrn1uHBwcMGbMmHIFR0RERGRIsufcAMCVK1fwzjvvoGvXrujWrRveeecd/Pbbb+UKYPXq1fDx8YG9vT2CgoJw8uRJrXX37t2LsLAw1KxZE9WqVUO7du04FEZERERqZCc3X331Ffz9/REfH4+AgAC0bNkS586dQ4sWLbBnzx5Zz9q1axcmTpyI6dOn4/z58+jYsSMiIiKQkZGhsf6JEycQFhaGQ4cOIT4+Hl26dEHv3r1x/vx5uc0gIiIiMyV7zo2vry+GDh2KOXPmqJXPmjUL//3vf5GWlqbzs9q2bYvWrVtjzZo1Upmfnx/69euHBQsW6PSM5s2bY9CgQZg5c6ZO9TnnhoiIyPQYdJ+b27dvY/jw4SXKhw4ditu3b+v8nIKCAsTHxyM8PFytPDw8HLGxsTo9Q6lU4v79+3B1ddX5fYmIiMi8yU5uOnfurHFezKlTp9CxY0edn5OdnY3CwsISGwJ6eHjonCQtXrwYDx8+xMCBA7XWyc/PR15entoXERERmS/Zq6X69OmDKVOmID4+HiEhIQCAM2fOYM+ePZg9ezb27dunVrcsCoVC7bUQokSZJjt27MBHH32E7777DrVq1dJab8GCBZg9e3aZzyMiIiLzIHvOjZWVbp09CoUChYWFWq8XFBTA0dERe/bsQf/+/aXyCRMmICEhATExMVrv3bVrF0aOHIk9e/agV69epcaRn5+P/Px86XVeXh7q16/POTdEREQmxKBzbpRKpU5fpSU2AGBra4ugoCBERUWplUdFRSE0NFTrfTt27MCIESOwffv2MhMbALCzs0O1atXUvoiIiMh8lWsTP32ZPHkyhg0bhuDgYLRr1w7r169HRkYGxo0bBwCYNm0abt68ia1btwJ4ltgMHz4cy5cvR0hIiDQ3x8HBAS4uLkZrBxEREVUeOvfc/PTTT/j+++/VyrZu3QofHx/UqlULb731ltrwjy4GDRqEZcuWYc6cOWjVqhVOnDiBQ4cOwdvbGwCQmZmptufNunXr8PTpU7z99tuoU6eO9DVhwgRZ70tERETmS+c5NxEREejcuTOmTJkCALhw4QJat26NESNGwM/PD//5z38wduxYfPTRR4aM97lxnxsiIiLTY5A5NwkJCejatav0eufOnWjbti02bNiAyZMnY8WKFdi9e3f5oyYiIiLSA52Tmzt37qjtSRMTE4MePXpIr1944QXcuHFDv9ERERERyaRzcuPh4YH09HQAz5Zxnzt3Du3atZOu379/HzY2NvqPkIiIiEgGnZObHj16YOrUqTh58iSmTZsGR0dHtR2JExMT0bBhQ4MESURERKQrnZeCz5s3DwMGDECnTp3g5OSEL774Ara2ttL1TZs2lTgnioiIiKiiyd6h+N69e3BycoK1tbVaeW5uLpycnNQSnsqIq6WIiIhMj5zPb9mb+GnbLI8ncxMREVFlIPv4BSIiIqLKjMkNERERmRUmN0RERGRWmNwQERGRWWFyQ0RERGaFyQ0RERGZFSY3REREZFaY3BARmbGlUclYEZ2i8dqK6BQsjUqu4IiIDI/JDRGRGbO2UmCJhgRnRXQKlkQlw9pKYaTIiAxH9g7FRERkOiK7NgYALPm7hyaya2MpsZkc1kS6TmROmNwQEZm5ognOqmNXUVCoZGJDZo3DUkREFiCya2PYWluhoFAJW2srJjZk1pjcEBFZgBXRKVJiU1Co1DrJmMgccFiKiMjMFZ9jo3oNgD04ZJaY3BARmTFNk4c1TTImMidMboiIzFihUmicPKx6XagUxgiLyKAUQgiL+s3Oy8uDi4sL7t27h2rVqhk7HCIiItKBnM9vTigmIiIis8LkhoiIiMwKkxsiIiIyK0xuiIiIyKwwuSEiIiKzwuSGiIiIzAqTGyIiIjIrTG6IiIjIrDC5ISIiIrPC5IaIiIjMCpMbIiILszQqGSuiUzReWxGdgqV/H6hJZKqY3BARWRhrKwWWaEhwVCeIW1spjBQZkX7wVHAiIgujOhF8yd89NJFdG0uJjaYTxIlMDZMbIiILVDTBWXXsKgoKlUxsyGxwWIqIyEJFdm0MW2srFBQqYWttxcSGzAaTGyIiC7UiOkVKbAoKlVonGROZGiY3REQWqOgcm+T5EZgc1gRLopIxZMMZrfW5iopMBZMbIiILo2nycGTXxght6IbY1JwSCc5r6+O0rqJi0kOVEZMbIiILU6gUGicPbx8TIiU4qiGqFdEpOJOWq/E5XDpOlZVCCCGMHURFysvLg4uLC+7du4dq1aoZOxwiokpHlbSo5uJMDmsCAGq9Pao6oQ3dsH1MiHTv0iLJTqFSYNLf96qeW7yMSFdyPr+5FJyIiNREdm0sLQ8vvoqq6NLxor08qjqqDQIBSEkR8Gxo60xarloZ8CwZOnstFy80cJWSHiZIpkf1M9O04s4YPzMmN0REpEbTKqrIro1LJD3bx4RIPTgAtC4lL21o6+y1XMSm5qiV6SNB0lauLXGq6GcU/d6YQ7JW9GdW9Peg6PyuisTkhoiIJMUnGxdNXgBoTHqAkpsBllYG/G9X5NjUHI09QJrikpMgaSvXljhV9DNUCU9sao7aM+QmSJUlgYvs2hhn0nIqza7XRk9uVq9ejf/85z/IzMxE8+bNsWzZMnTs2FFr/ZiYGEyePBmXLl2Cp6cnPvjgA4wbN64CIyYiMk/aVlEBUPswL570aBvG0mVoq/jz9JUgyU2cKvoZqsQmtKGb2jPlJEjayo2RwBVtZ2XY9dqoyc2uXbswceJErF69Gu3bt8e6desQERGBpKQkeHl5laifnp6Onj17YsyYMdi2bRtOnz6N8ePHo2bNmnjllVeM0AIiIvOhbRWVSoivq8ak50xajsbNAHUZ2ir6PEMkSHISp4p+hq6JkCkkcEWT4ibTvzf6rtdGXS3Vtm1btG7dGmvWrJHK/Pz80K9fPyxYsKBE/SlTpmDfvn24fPmyVDZu3Dj8+uuviIuL0+k9uVqKiEie0iaLDtlwRhpaKd6jU7ysaEJQdCVW0TqaVmgVrwtA7QM0eX6EFI+c8srwDE3t1vb9kFsu53ttyGfoK8GR8/lttH1uCgoKEB8fj/DwcLXy8PBwxMbGarwnLi6uRP3u3bvjl19+wZMnTwwWKxGRJZuk5QNK9S/5sj7AIrs2lnZA1rYrsqZyTWUrolO0Hhshp7yyPEPb+V76KK/oZ2jb9doYx3oYbVgqOzsbhYWF8PDwUCv38PDA7du3Nd5z+/ZtjfWfPn2K7Oxs1KlTp8Q9+fn5yM/Pl17n5eXpIXoiItI0jKUqU/25uOJDW2fScjTOPSmurLk/qufoWl5ZnqFpSE91/XnLAc1Dg4Z4RvEePE0/s4ocojL6hGKFQn1nSyFEibKy6msqV1mwYAFmz579nFESEVFxmpYva1vSrG0+zwsNXNX+W7Su6s/F6ZIgyU2cKvoZxcuLLqsvT4JUGRI4Td8j1WtNP0dDMlpy4+7uDmtr6xK9NFlZWSV6Z1Rq166tsX6VKlXg5uam8Z5p06Zh8uTJ0uu8vDzUr1//OaMnIiI5tCU9hkqQtJVrS5wq+hlFJ+eqyp83QTJmAgdAGoLSluBUJKMlN7a2tggKCkJUVBT69+8vlUdFRaFv374a72nXrh3279+vVnbkyBEEBwfDxsZG4z12dnaws7PTX+BERGQUchIkbeWV5Rn6SNS0lRsjgTNWD402Rl0ttWvXLgwbNgxr165Fu3btsH79emzYsAGXLl2Ct7c3pk2bhps3b2Lr1q0Ani0F9/f3x9ixYzFmzBjExcVh3Lhx2LFjh85LwblaioiIyPSYzNlSgwYNQk5ODubMmYPMzEz4+/vj0KFD8Pb2BgBkZmYiIyNDqu/j44NDhw5h0qRJ+Oyzz+Dp6YkVK1ZwjxsiIiKS8FRwIiIiqvRMYp8bIiIiIkNgckNERERmhckNERERmRUmN0RERGRWmNwQERGRWWFyQ0RERGaFyQ0RERGZFSY3REREZFaMfip4RVPtWZiXl2fkSIiIiEhXqs9tXfYetrjk5v79+wDAk8GJiIhM0P379+Hi4lJqHYs7fkGpVOLWrVtwdnaGQqEo1zPy8vJQv3593Lhxw2yPcGAbzYMltBGwjHayjeaBbSw/IQTu378PT09PWFmVPqvG4npurKysUK9ePb08q1q1amb7y6nCNpoHS2gjYBntZBvNA9tYPmX12KhwQjERERGZFSY3REREZFaY3JSDnZ0dZs2aBTs7O2OHYjBso3mwhDYCltFOttE8sI0Vw+ImFBMREZF5Y88NERERmRUmN0RERGRWmNwQERGRWWFyUw6rV6+Gj48P7O3tERQUhJMnTxo7JJ0sWLAAL7zwApydnVGrVi3069cPV65cUasjhMBHH30ET09PODg4oHPnzrh06ZJanfz8fLz77rtwd3dH1apV0adPH/z+++8V2RSdLViwAAqFAhMnTpTKzKGNN2/exNChQ+Hm5gZHR0e0atUK8fHx0nVTb+PTp0/x4YcfwsfHBw4ODvD19cWcOXOgVCqlOqbWxhMnTqB3797w9PSEQqHAt99+q3ZdX+25c+cOhg0bBhcXF7i4uGDYsGG4e/eugVv3P6W188mTJ5gyZQpatGiBqlWrwtPTE8OHD8etW7fUnlHZ21nWz7KosWPHQqFQYNmyZWrl5tDGy5cvo0+fPnBxcYGzszNCQkKQkZEhXTdqGwXJsnPnTmFjYyM2bNggkpKSxIQJE0TVqlXF9evXjR1ambp37y42b94sLl68KBISEkSvXr2El5eXePDggVRn4cKFwtnZWXz99dfiwoULYtCgQaJOnToiLy9PqjNu3DhRt25dERUVJc6dOye6dOkiAgICxNOnT43RLK1+/vln0aBBA9GyZUsxYcIEqdzU25ibmyu8vb3FiBEjxE8//STS09PF0aNHxdWrV6U6pt7GefPmCTc3N3HgwAGRnp4u9uzZI5ycnMSyZcukOqbWxkOHDonp06eLr7/+WgAQ33zzjdp1fbWnR48ewt/fX8TGxorY2Fjh7+8vXn755YpqZqntvHv3rujWrZvYtWuX+O2330RcXJxo27atCAoKUntGZW9nWT9LlW+++UYEBAQIT09PsXTpUrVrpt7Gq1evCldXV/H++++Lc+fOidTUVHHgwAHxxx9/VIo2MrmRqU2bNmLcuHFqZU2bNhVTp041UkTll5WVJQCImJgYIYQQSqVS1K5dWyxcuFCq8/jxY+Hi4iLWrl0rhHj2l5ONjY3YuXOnVOfmzZvCyspKHD58uGIbUIr79++Lxo0bi6ioKNGpUycpuTGHNk6ZMkV06NBB63VzaGOvXr3EqFGj1MoGDBgghg4dKoQw/TYW/7DQV3uSkpIEAHHmzBmpTlxcnAAgfvvtNwO3qqTSPvhVfv75ZwFA+geiqbVTWxt///13UbduXXHx4kXh7e2tltyYQxsHDRok/f+oibHbyGEpGQoKChAfH4/w8HC18vDwcMTGxhopqvK7d+8eAMDV1RUAkJ6ejtu3b6u1z87ODp06dZLaFx8fjydPnqjV8fT0hL+/f6X6Hrz99tvo1asXunXrplZuDm3ct28fgoOD8X//93+oVasWAgMDsWHDBum6ObSxQ4cOiI6ORnJyMgDg119/xalTp9CzZ08A5tHGovTVnri4OLi4uKBt27ZSnZCQELi4uFS6Nqvcu3cPCoUC1atXB2Ae7VQqlRg2bBjef/99NG/evMR1U2+jUqnEwYMH0aRJE3Tv3h21atVC27Zt1YaujN1GJjcyZGdno7CwEB4eHmrlHh4euH37tpGiKh8hBCZPnowOHTrA398fAKQ2lNa+27dvw9bWFjVq1NBax9h27tyJc+fOYcGCBSWumUMb09LSsGbNGjRu3Bg//PADxo0bh8jISGzduhWAebRxypQpGDx4MJo2bQobGxsEBgZi4sSJGDx4MADzaGNR+mrP7du3UatWrRLPr1WrVqVrMwA8fvwYU6dOxZAhQ6QziMyhnZ988gmqVKmCyMhIjddNvY1ZWVl48OABFi5ciB49euDIkSPo378/BgwYgJiYGADGb6PFHZypD8VPExdClPuEcWN55513kJiYiFOnTpW4Vp72VZbvwY0bNzBhwgQcOXIE9vb2WuuZchuVSiWCg4Px8ccfAwACAwNx6dIlrFmzBsOHD5fqmXIbd+3ahW3btmH79u1o3rw5EhISMHHiRHh6euKNN96Q6plyGzXRR3s01a+MbX7y5Alee+01KJVKrF69usz6ptLO+Ph4LF++HOfOnZMdi6m0UTWxv2/fvpg0aRIAoFWrVoiNjcXatWvRqVMnrfdWVBvZcyODu7s7rK2tS2SUWVlZJf7FVZm9++672LdvH44fP652Qnrt2rUBoNT21a5dGwUFBbhz547WOsYUHx+PrKwsBAUFoUqVKqhSpQpiYmKwYsUKVKlSRYrRlNtYp04dNGvWTK3Mz89PWqVgDj/H999/H1OnTsVrr72GFi1aYNiwYZg0aZLUG2cObSxKX+2pXbs2/vjjjxLP//PPPytVm588eYKBAwciPT0dUVFRaidHm3o7T548iaysLHh5eUl/B12/fh3vvfceGjRoAMD02+ju7o4qVaqU+feQMdvI5EYGW1tbBAUFISoqSq08KioKoaGhRopKd0IIvPPOO9i7dy+OHTsGHx8ftes+Pj6oXbu2WvsKCgoQExMjtS8oKAg2NjZqdTIzM3Hx4sVK8T3o2rUrLly4gISEBOkrODgYr7/+OhISEuDr62vybWzfvn2JJfzJycnw9vYGYB4/x0ePHsHKSv2vJ2tra+lfjObQxqL01Z527drh3r17+Pnnn6U6P/30E+7du1dp2qxKbFJSUnD06FG4ubmpXTf1dg4bNgyJiYlqfwd5enri/fffxw8//ADA9Ntoa2uLF154odS/h4zexueajmyBVEvBN27cKJKSksTEiRNF1apVxbVr14wdWpn++c9/ChcXF/Hjjz+KzMxM6evRo0dSnYULFwoXFxexd+9eceHCBTF48GCNy1Hr1asnjh49Ks6dOydeeumlSrOEWJOiq6WEMP02/vzzz6JKlSpi/vz5IiUlRXz55ZfC0dFRbNu2Tapj6m184403RN26daWl4Hv37hXu7u7igw8+kOqYWhvv378vzp8/L86fPy8AiCVLlojz589Lq4T01Z4ePXqIli1biri4OBEXFydatGhRoUvBS2vnkydPRJ8+fUS9evVEQkKC2t9D+fn5JtPOsn6WxRVfLSWE6bdx7969wsbGRqxfv16kpKSIlStXCmtra3Hy5MlK0UYmN+Xw2WefCW9vb2Fraytat24tLaWu7ABo/Nq8ebNUR6lUilmzZonatWsLOzs78eKLL4oLFy6oPeevv/4S77zzjnB1dRUODg7i5ZdfFhkZGRXcGt0VT27MoY379+8X/v7+ws7OTjRt2lSsX79e7bqptzEvL09MmDBBeHl5CXt7e+Hr6yumT5+u9gFoam08fvy4xv//3njjDSGE/tqTk5MjXn/9deHs7CycnZ3F66+/Lu7cuVNBrSy9nenp6Vr/Hjp+/LjJtLOsn2VxmpIbc2jjxo0bRaNGjYS9vb0ICAgQ3377rdozjNlGngpOREREZoVzboiIiMisMLkhIiIis8LkhoiIiMwKkxsiIiIyK0xuiIiIyKwwuSEiIiKzwuSGiIiIzAqTGyIiIjIrTG6IdHTt2jUoFAokJCQYO5TnsmXLFlSvXt3YYejElGKl/7ly5Qpq166N+/fv63zPhQsXUK9ePTx8+NCAkZGlYHJDBEChUJT6NWLECGOHaJEGDRqE5OTkct3buXPnUn+mqhOazclHH32EVq1aGTsMTJ8+HW+//TacnZ0BAD/++CMUCgXu3r0r1bl16xb8/f3RoUMH3L17Fy1atECbNm2wdOlSI0VN5oTJDRGenVar+lq2bBmqVaumVrZ8+XKDvXdBQYHBnm3qHBwcUKtWrXLdu3fvXunnpzp1+OjRo1LZ2bNn9RmqQVX074gQAk+fPi3Xvb///jv27duHkSNHaq2TmpqKDh06wMvLC0eOHJF650aOHIk1a9agsLCwXO9NpMLkhghA7dq1pS8XFxcoFIoSZSppaWno0qULHB0dERAQgLi4OLVnxcbG4sUXX4SDgwPq16+PyMhIta72Bg0aYN68eRgxYgRcXFwwZswYafjlwIED+Mc//gFHR0e8+uqrePjwIb744gs0aNAANWrUwLvvvqv2F/+dO3cwfPhw1KhRA46OjoiIiEBKSopaPFu2bIGXlxccHR3Rv39/5OTkSNeuXbsGKysr/PLLL2r3rFy5Et7e3hBCSP/qjo6ORnBwMBwdHREaGoorV65I9VNTU9G3b194eHjAyckJL7zwAo4ePar2TFW7hw8fDicnJ3h7e+O7777Dn3/+ib59+8LJyQktWrRQi0XTsNS+ffsQHBwMe3t7uLu7Y8CAARp/pq6urtLPr2bNmgAANzc3qezPP/9Ez5494eTkBA8PDwwbNgzZ2dnS/Z07d8a7776LiRMnokaNGvDw8MD69evx8OFDjBw5Es7OzmjYsCG+//576R7V9+rgwYMICAiAvb092rZtiwsXLjz37wgATJkyBU2aNIGjoyN8fX0xY8YMPHnyRPpezZ49G7/++qvUO7VlyxaNw6l3796FQqHAjz/+qBb3Dz/8gODgYNjZ2eHkyZMQQmDRokXw9fWFg4MDAgIC8NVXX2n8fqvs3r0bAQEBqFevnsbriYmJ6NChA9q2bYvvvvsOjo6O0rXu3bsjJycHMTExpb4HUZme++hNIjOzefNm4eLiUqJcdaJx06ZNxYEDB8SVK1fEq6++Kry9vcWTJ0+EEEIkJiYKJycnsXTpUpGcnCxOnz4tAgMDxYgRI6TneHt7i2rVqon//Oc/IiUlRaSkpIjNmzcLGxsbERYWJs6dOydiYmKEm5ubCA8PFwMHDhSXLl0S+/fvF7a2tmLnzp3Ss/r06SP8/PzEiRMnREJCgujevbto1KiRKCgoEEIIcebMGaFQKMSCBQvElStXxPLly0X16tXV2hcWFibGjx+v1tbAwEAxc+ZMIcT/Tgdu27at+PHHH8WlS5dEx44dRWhoqFQ/ISFBrF27ViQmJork5GQxffp0YW9vL65fv67WbldXV7F27VqRnJws/vnPfwpnZ2fRo0cPsXv3bnHlyhXRr18/4efnJ5RKpcafxYEDB4S1tbWYOXOmSEpKEgkJCWL+/Pll/kxVP7vz588LIYS4deuWcHd3F9OmTROXL18W586dE2FhYaJLly7SPZ06dRLOzs5i7ty5Ijk5WcydO1dYWVmJiIgIsX79eqkNbm5u4uHDh2rfKz8/P3HkyBGRmJgoXn75ZdGgQQPpZ1Le3xEhhJg7d644ffq0SE9PF/v27RMeHh7ik08+EUII8ejRI/Hee++J5s2bi8zMTJGZmSkePXpUou1CCHHnzh21k7hVcbds2VIcOXJEXL16VWRnZ4t///vfomnTpuLw4cMiNTVVbN68WdjZ2Ykff/xR6/e6b9++Yty4cWplqucfPHhQVK9eXYwfP14UFhZqvL9Nmzbio48+KvNnSlQaJjdExZSV3Hz++edS2aVLlwQAcfnyZSGEEMOGDRNvvfWW2n0nT54UVlZW4q+//hJCPPvg6tevX4n3BCCuXr0qlY0dO1Y4OjqK+/fvS2Xdu3cXY8eOFUIIkZycLACI06dPS9ezs7OFg4OD2L17txBCiMGDB4sePXqovdegQYPU2rdr1y5Ro0YN8fjxYyHEs0RFoVCI9PR0IcT/PpiOHj0q3XPw4EEBQGqTJs2aNRMrV66UXnt7e4uhQ4dKrzMzMwUAMWPGDKksLi5OABCZmZnS96VorO3atROvv/661vfUpvgH/IwZM0R4eLhanRs3bggA4sqVK0KIZ8lNhw4dpOtPnz4VVatWFcOGDSvRhri4OCHE/75XRRPQnJwc4eDgIHbt2iWEKP/viCaLFi0SQUFB0utZs2aJgICAUtsuhPbk5ttvv5XqPHjwQNjb24vY2Fi157355pti8ODBWmMKCAgQc+bMUStTPd/W1lbt+6dJ//791RI9ovLgsBSRTC1btpT+XKdOHQBAVlYWACA+Ph5btmyBk5OT9NW9e3colUqkp6dL9wUHB5d4rqOjIxo2bCi99vDwQIMGDeDk5KRWpnqvy5cvo0qVKmjbtq103c3NDf/4xz9w+fJlqU67du3U3qf46379+qFKlSr45ptvAACbNm1Cly5dSky4La3dDx8+xAcffIBmzZqhevXqcHJywm+//YaMjAytz/Dw8AAAtGjRokSZ6rnFJSQkoGvXrhqvyREfH4/jx4+r/ZyaNm0K4NkQm6Z4ra2t4ebmplO8Rb/Hrq6uaj+T5/kd+eqrr9ChQwfUrl0bTk5OmDFjRonv8fMo+p5JSUl4/PgxwsLC1GLdunWr2veouL/++gv29vYar/Xt2xfffPMNTp48qfV+BwcHPHr0qPyNIAJQxdgBEJkaGxsb6c8KhQIAoFQqpf+OHTsWkZGRJe7z8vKS/ly1atVSn6t6tqYy1XsJITTGJ4SQ4tJWpyhbW1sMGzYMmzdvxoABA7B9+3YsW7as1PiKt/v999/HDz/8gE8//RSNGjWCg4MDXn311RITYTU9o7TnFufg4FBme3ShVCrRu3dvfPLJJyWuqRK34rGp4pMTb/F7VXXL8zty5swZvPbaa5g9eza6d+8OFxcX7Ny5E4sXLy71fa2snv0btujvgmqeTnFF31PVpoMHD6Ju3bpq9ezs7LS+n7u7O+7cuaPx2rp16zBlyhRERETg4MGD6NSpU4k6ubm5akk+UXkwuSHSo9atW+PSpUto1KiRwd+rWbNmePr0KX766SeEhoYCAHJycpCcnAw/Pz+pzpkzZ9TuK/4aAEaPHg1/f3+sXr0aT5480TpJV5uTJ09ixIgR6N+/PwDgwYMHuHbtWjlaVbqWLVsiOjq61JU4umjdujW+/vprNGjQAFWq6P+vwTNnzkiJyp07d5CcnCz1DJX3d+T06dPw9vbG9OnTpbLr16+r1bG1tS2x0kg1mTozMxOBgYEAoNNeTc2aNYOdnR0yMjI0JiHaBAYGIikpSeM1hUKBdevWwdraGj179sTBgwfRuXNntToXL17Eq6++qvP7EWnCYSkiPZoyZQri4uLw9ttvIyEhASkpKdi3bx/effddvb9X48aN0bdvX4wZMwanTp3Cr7/+iqFDh6Ju3bro27cvACAyMhKHDx/GokWLkJycjFWrVuHw4cMlnuXn54eQkBBMmTIFgwcPlt1D0qhRI+zduxcJCQn49ddfMWTIEJ16M+SaNWsWduzYgVmzZuHy5cu4cOECFi1aJPs5b7/9NnJzczF48GD8/PPPSEtLw5EjRzBq1Ci9LEOeM2cOoqOjcfHiRYwYMQLu7u7o168fgPL/jjRq1AgZGRnYuXMnUlNTsWLFCmkoUaVBgwZIT09HQkICsrOzkZ+fDwcHB4SEhGDhwoVISkrCiRMn8OGHH5bZBmdnZ/zrX//CpEmT8MUXXyA1NRXnz5/HZ599hi+++ELrfd27d0dcXJzW76NCocDq1asxcuRI9OrVC8eOHZOuXbt2DTdv3kS3bt3KjI+oNExuiPSoZcuWiImJQUpKCjp27IjAwEDMmDFDbahDnzZv3oygoCC8/PLLaNeuHYQQOHTokDR0EhISgs8//xwrV65Eq1atcOTIEa0fbG+++SYKCgowatQo2XEsXboUNWrUQGhoKHr37o3u3bujdevWz9U2TTp37ow9e/Zg3759aNWqFV566SX89NNPsp/j6emJ06dPo7CwEN27d4e/vz8mTJgAFxcXaRjneSxcuBATJkxAUFAQMjMzsW/fPtja2gIo/+9I3759MWnSJLzzzjto1aoVYmNjMWPGDLU6r7zyCnr06IEuXbqgZs2a2LFjB4Bn86iePHmC4OBgTJgwAfPmzdOpHXPnzsXMmTOxYMEC+Pn5oXv37ti/fz98fHy03tOzZ0/Y2NiU2AqgKIVCgVWrVmH06NF4+eWXpbo7duxAeHg4vL29dYqPSBuF0GVQnojM3vz587Fz584Se7KQ7n788Ud06dIFd+7csehjI1avXo3vvvsOP/zwg8735Ofno3HjxtixYwfat29vwOjIEnDODZGFe/DgAS5fvoyVK1di7ty5xg6HzMBbb72FO3fu4P79+9IRDGW5fv06pk+fzsSG9II9N0QWbsSIEdixYwf69euH7du3w9ra2tghmSz23BBVDkxuiIiIyKxwQjERERGZFSY3REREZFaY3BAREZFZYXJDREREZoXJDREREZkVJjdERERkVpjcEBERkVlhckNERERmhckNERERmZX/B7/HtXf9yHjHAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "results_spindynamics.plot()" ] }, { "cell_type": "markdown", "id": "930131fb-9e47-4c97-b151-345ba01bddd5", "metadata": {}, "source": [ "We can access the `Ms` and `T` attributes and get `mammos_entity.Entity` objects:" ] }, { "cell_type": "code", "execution_count": 5, "id": "bd4e066b-6077-4463-a07e-173c4c2fcd61", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "SpontaneousMagnetization(value=\n", "[1160762.15152728 1152764.540031 1144332.38021977 1136095.4237953\n", " 1128134.37709324 1119860.36127139 1111776.43793683 1102918.50364088\n", " 1094392.01798628 1085670.06372291 1076778.81897829 1067425.28513189\n", " 1057970.97409635 1048538.21055569 1039913.8221449 1029517.07701433\n", " 1019718.19960104 1010212.40682623 1000827.01766803 990071.55620798\n", " 977847.7971226 967365.03404838 957943.74673504 945368.08824221\n", " 933306.33678552 924042.80638082 911156.5370935 898923.20851189\n", " 886959.86875088 874610.18656417 859777.5032481 846674.7339648\n", " 833341.85234593 817215.36597138 802915.55664802 788770.83767705\n", " 767322.55015624 749504.37038855 733715.25355713 716555.57268794\n", " 695546.66554008 675931.69422208 650394.96667178 623964.15571257\n", " 595267.15471822 574337.71381396 540677.01870906 506480.06838947\n", " 465749.37929254 419581.94398809 363556.9147052 283780.87532889\n", " 116330.7659029 45920.08375439 28204.38382936 22252.02685696\n", " 18336.06448858 16018.35637159 14232.77360447 13649.49689592\n", " 12290.85695223 11386.3050879 10781.61435564 10306.54019184\n", " 9665.93883184 9395.09234065 8975.25861354 8438.06343775\n", " 8343.59372938 8102.70528087 7747.89846694 7593.11190125\n", " 7321.35684554 7307.02274373 7047.92251168 7129.16483945\n", " 6674.61311621 6599.17726486 6616.13202518 12484.21016472],\n", " unit=A / m)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results_spindynamics.Ms" ] }, { "cell_type": "code", "execution_count": 6, "id": "721ea3e3-0a5f-4b04-acc7-ac67e4ca196b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "ThermodynamicTemperature(value=\n", "[ 20. 40. 60. 80. 100. 120. 140. 160. 180. 200. 220. 240.\n", " 260. 280. 300. 320. 340. 360. 380. 400. 420. 440. 460. 480.\n", " 500. 520. 540. 560. 580. 600. 620. 640. 660. 680. 700. 720.\n", " 740. 760. 780. 800. 820. 840. 860. 880. 900. 920. 940. 960.\n", " 980. 1000. 1020. 1040. 1060. 1080. 1100. 1120. 1140. 1160. 1180. 1200.\n", " 1220. 1240. 1260. 1280. 1300. 1320. 1340. 1360. 1380. 1400. 1420. 1440.\n", " 1460. 1480. 1500. 1520. 1540. 1560. 1580. 1600.],\n", " unit=K)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results_spindynamics.T" ] }, { "cell_type": "markdown", "id": "56aa63fa-25a6-49e4-9af9-5fd22911db54", "metadata": {}, "source": [ "To work with the data we can also get it as `pandas.DataFrame`. The dataframe only contains the values (not units)." ] }, { "cell_type": "code", "execution_count": 7, "id": "48c0fe28-35e4-4880-9a98-739ed9302b08", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TMs
020.01.160762e+06
140.01.152765e+06
260.01.144332e+06
380.01.136095e+06
4100.01.128134e+06
.........
751520.07.129165e+03
761540.06.674613e+03
771560.06.599177e+03
781580.06.616132e+03
791600.01.248421e+04
\n", "

80 rows × 2 columns

\n", "
" ], "text/plain": [ " T Ms\n", "0 20.0 1.160762e+06\n", "1 40.0 1.152765e+06\n", "2 60.0 1.144332e+06\n", "3 80.0 1.136095e+06\n", "4 100.0 1.128134e+06\n", ".. ... ...\n", "75 1520.0 7.129165e+03\n", "76 1540.0 6.674613e+03\n", "77 1560.0 6.599177e+03\n", "78 1580.0 6.616132e+03\n", "79 1600.0 1.248421e+04\n", "\n", "[80 rows x 2 columns]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results_spindynamics.dataframe" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 5 }