Magnetic Material Ontology

Version 0.0.2

Magnetic Multiscale Modelling Suite (MaMMoS)

December 22, 2024

Abstract:

An EMMO-based ontology for magnetic materials. Created within the EU project Magnetic Multiscale Mdelling Suite (MaMMoS), Grant number 101135546 (HORIZON-CL4-2023-DIGITAL-EMERGING-01) MagneticMaterial is released under the Creative Commons Attribution 4.0 International license (CC BY 4.0).

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Health and Digital Executive Agency (HADEA). Neither the European Union nor the granting authority can be held responsible for them.


Authors:
Wilfried Hortschitz, UWK Krems, Austria
Santa Pile, UWK Krems, Austria
Thomas Schrefl, UWK Krems, Austria

Content

Overview

The MaMMoS magnetic materials ontology is a domain ontology which uses EMMO as top level ontology. The magnetic material ontology reflects the hierarchical structure of the magnet. It reveals its physical parts at different length scales.

Magnet

A magnet is functionally defined material. Possible subclasses of a magnet are bulk magnet, thin film magnet, or multilayer magnet. A magnet may have a granular microstructure.

A Magnet and its parts.

Granular Microstructure

The spatial parts of the granular microstructure are the main magnetic phase, the grain boundary phase, and secondary phase.

The granular microstructure constists of a main magnetic phase, possible grain boundary phases and secondary phases.

The granular microstructure of a magnet.

Magnetic material

The main magnetic phase is a magnetic material. A magnetic material has intrinsic magnetic properties and a chemical composition. A magnetic material can be amorphous or crystalline.

A magnetic material and its relations.

Crystalline magnetic material

A crystalline magnetic material is a granular structure. Properties of the granular structure are a crystal structure and a grain size distribution. X-ray diffraction data may have been measured.

A crystalline magnetic material.

Intrinsic magnetic properties

The intrinsic magnetic properties depend on the chemical composition and the crystal structure. They are a property of the magnetic material.

Intrinsic magnetic properties.

Extrinsic magnetic properties

Whereas the intrinsic magnetic properties are a property of a magnetic material, the extrinsic magnetic properties depend on the microstructure and shape of the magnet. They are a property of the magnet. An important subset of the extrinsic magnetic properties are the magnetic hysteresis properties.

A bulk magnet and its properties.
The exterinsic magnetic properties.

Classes

AbsolutePermeability

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_98f7a685-fa5a-54f1-8504-f398047f3ab6

elucidation: Ratio of the change of magnetic flux and the internal field: B = mu H

IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-28

altLabel: absolute permeability, mu

prefLabel: AbsolutePermeability

Subclass of:

AmorphousMagneticMaterial

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_694b3915-3326-5fb2-87a1-20ccf1dc79dc

elucidation: Any amorphous structure entails a distribution of nearest-neighbour environments and bond lengths for a given magnetic atom, described by the radial distribution function and higher-order correlation functions. These distributions lead to a distribution of site moments, exchange interactions, dipolar and crystal fields, all of which influence the nature of the magnetic order

prefLabel: AmorphousMagneticMaterial

wikipediaReference: https://en.wikipedia.org/wiki/Amorphous_magnet

Subclass of:

AmpereSquareMetrePerKilogram

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_e838288f-b0b4-5bcb-9889-06b2a10d3ccf

elucidation: Unit of the magnetic moment per unit mass: Am²/kg

prefLabel: AmpereSquareMetrePerKilogram

Subclass of:

AnisotropyField

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_cd58ebab-4351-5d0d-ad45-bbddd6efead3

elucidation: The anisotropy field Ha is defined as the field needed to saturate the magnetization of a uniaxial crystal in a hard direction Ha = 2 Ku/Js

altLabel: Ha

comment: Beware of taking the idea of anisotropy field too literally. Except at small angles, the energy variation in a field is not the same as the leading term in the anisotropy. A magnetic field defines an easy direction, not an easy axis.

prefLabel: AnisotropyField

Subclass of:

BulkMagnet

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_d28323da-810f-5cbe-a770-eab7e7fdb493

elucidation: Piece of matter made of one or more magnetic material.

prefLabel: BulkMagnet

Subclass of:

CellVolume

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_2b7f8b13-d0c3-590c-9851-ca89ce5b7395

elucidation: Volume of the unit cell.

altLabel: UnitCellVolume

prefLabel: CellVolume

Subclass of:

CoercivityBHc

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_69772e86-d7fb-5b43-9cd4-2f0770c6701f

elucidation: Defined as internal field on the B(H) loop where B = 0. It is also called flux coercivity BHc.

BHc depends on sample shape and has to be corrected for the demagnetizing field.

altLabel: BHc

prefLabel: CoercivityBHc

Subclass of:

CoercivityBHcExternal

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_a4bc4536-f381-5bcd-b6ca-34fb1a913efd

elucidation: Defined as external field on the B(H’) loop where B = 0. H’ is the external field.

altLabel: BH’c

prefLabel: CoercivityBHcExternal

Subclass of:

CoercivityHc

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_0d67d6c5-a8a7-57d4-930a-e99412baa2c2

elucidation: The internal magnetic held -Hc at which the macroscopic magnetization vanishes is the coercivity or coercive force.

Although it is not an intrinsic property in our sense of the term, the M-H loop coercivity Hc is sometimes referred to as ‘intrinsic’ coercivity.

altLabel: Coercive field, Hc

prefLabel: CoercivityHc

Subclass of:

CoercivityHcExternal

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_fe101d1d-f1f7-54f8-886b-fa6d6052ce98

elucidation: The external magnetic held -H’c at which the macroscopic magnetization vanishes. The coercivity on M(H’) loop, where H’ is the external field.

altLabel: H’c

prefLabel: CoercivityHcExternal

Subclass of:

CrystalStructure

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_2c96e798-57dc-5c12-ad10-f3ec261549d3

elucidation: Description of ordered arrangement of atoms

prefLabel: CrystalStructure

wikidataReference: https://www.wikidata.org/wiki/Q895901

wikipediaReference: https://en.wikipedia.org/wiki/Crystal_structure

Subclass of:

CrystallineMagneticMaterial

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_aaa107b8-4dd9-5fc8-b135-a604a0cb38b1

elucidation: Magnetic material with crystalline structure

prefLabel: CrystallineMagneticMaterial

Subclass of:

CrystallographicOrientation

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_4f709756-86ee-5307-880a-696d08ae9732

elucidation: relative direction of a crystallite in space with respect to another, disregarding distance

altLabel: crystal orientation

prefLabel: CrystallographicOrientation

wikidataReference: https://www.wikidata.org/wiki/Q11799166

Subclass of:

CubicMagnetocrystallineAnisotropy

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_af109e05-abbd-5964-8e39-8249b9eda7da

elucidation: Cubic crystals anisotropy

prefLabel: CubicMagnetocrystallineAnisotropy

Subclass of:

DemagnetizingFactor

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_0f2b5cc9-d00a-5030-8448-99ba6b7dfd1e

elucidation: For a uniformly magnetized ellipsoid with magnetization along a major axis the demagnetizing field is Hd = -N M.

The principal components of the diagonal demagnetizing tensor form the demagnetizing factors. Only two of the three are independent because the demagnetizing tensor has unit trace Nx + Ny + Nz = 1.

IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-63

altLabel: N, D

comment: H = H’ - DM, where D is the demagneting factor, M is the magnetization, and H is the internal field

prefLabel: DemagnetizingFactor

Subclass of:

DemagnetizingField

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_ace0a9bf-0b4d-5cd2-be02-3c3b816a279b

elucidation: The magnetic field produced by the magnetization distribution of the sample itself

altLabel: Hd

prefLabel: DemagnetizingField

wikidataReference: https://www.wikidata.org/wiki/Q5255001

wikipediaReference: https://en.wikipedia.org/wiki/Demagnetizing_field

Subclass of:

EasyAxisDistributionSigma

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_af13f0cd-63c7-50f5-9f20-59d54fc09710

elucidation: Standard deviation of the grain misalignment angle in an ensembles of misaligned magnetic particles

This refers not only to isotropic magnets but also to partly aligned or textured magnets, where the easy-axis distribution is described by a function P(theta).

prefLabel: EasyAxisDistributionSigma

Subclass of:

EnergyDensity

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_56258d3a-f2ee-554e-af99-499dd8620457

elucidation: Energy Density.

prefLabel: EnergyDensity

Subclass of:

EulerAngles

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_bc4030ff-d125-5e63-b8f8-b2ef3d08b6d5

elucidation: three angles introduced by Leonhard Euler to describe the orientation of a rigid body with respect to a fixed coordinate system

prefLabel: EulerAngles

wikidataReference: https://www.wikidata.org/wiki/Q751290

Subclass of:

ExchangeStiffnessConstant

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_526ed2a5-a017-590e-8eb8-8a900f2b3b78

elucidation: Exchange constant, A, in the continuum theory of micromagnetism.

The exchange stiffness A is related to the Curie temperature TC: A is roughly k_B T_c/(2 a_0), where a_0 is the lattice parameter in a simple structure.

altLabel: A

prefLabel: ExchangeStiffnessConstant

Subclass of:

ExternalMagneticField

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_da08f0d3-fe19-58bc-8fb6-ecc8992d5eb3

elucidation: The external field H′, acting on a sample that is produced by electric currents or the stray field of magnets outside the sample volume, is often called the applied field.

altLabel: AppliedMagneticField, H’

prefLabel: ExternalMagneticField

Subclass of:

ExternalSusceptibility

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_d96c3ad6-5fcc-5628-93b6-bfac2fca8249

elucidation: Ratio of the change of magnetization and the external field: M = chi’ H’

altLabel: chi’

prefLabel: ExternalSusceptibility

wikidataReference: https://www.wikidata.org/wiki/Q691463

Subclass of:

ExtrinsicMagneticProperties

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_8a0c8d0a-3dc7-5f3f-ab20-24b38d188827

elucidation: Extrinsic magnetic Properties depend on the microstructure.

prefLabel: ExtrinsicMagneticProperties

Subclass of:

GeometricShape

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_aa999d91-076f-512a-85a0-c2f751c083b1

elucidation: Geometric shape.

Two extrinsic properties, the remanence Mr and coercivity Hc, which depend on the sample shape

prefLabel: GeometricShape

wikidataReference: https://www.wikidata.org/wiki/Q207961

wikipediaReference: https://en.wikipedia.org/wiki/Shape

Subclass of:

GeometricalSize

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_0213900b-ab6d-56be-82fb-4db874974de1

elucidation: Spatial extension along the princial axes.

prefLabel: GeometricalSize

wikipediaReference: https://en.wikipedia.org/wiki/Size

Subclass of:

Grain

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_b0f0e57e-464d-562f-80ec-b216c92d5e88

elucidation: A grain is a small or even microscopic crystal which forms, for example, during the cooling of many materials.

altLabel: Crystallite

prefLabel: Grain

wikidataReference: https://www.wikidata.org/wiki/Q899604

wikipediaReference: https://en.wikipedia.org/wiki/Crystallite

Subclass of:

GrainMisalignmentAngle

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_5408b3d3-4971-564b-a34c-53e4e3c3f44d

elucidation: Standard deviation of the angle of the easy axis with respect to the alignment direction

prefLabel: GrainMisalignmentAngle

wikidataReference: https://www.wikidata.org/wiki/Q117089304

Subclass of:

GrainSizeDistribution

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_ada88738-c901-5d83-884b-5f84d27ce527

elucidation: Function representing relative sizes of grains in a system.

Given by its mean and standard deviation of a lognormal distribution

altLabel: ParticleSizeDistribution

prefLabel: GrainSizeDistribution

wikidataReference: https://www.wikidata.org/wiki/Q2054937

wikipediaReference: https://en.wikipedia.org/wiki/Particle-size_distribution

Subclass of:

GrainboundaryPhase

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_329e0b77-853d-5615-8df9-9bee0fd1189e

elucidation: Material separating grains in a microstructure

comment: In permanent magnets, the grain boundary phase inhibits the propagation of the magnetic reversal from grain to grain.

prefLabel: GrainboundaryPhase

Subclass of:

GranularMicrostructure

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_cf5261fe-bdab-5c7b-b6a8-f9a313687bc2

elucidation: The granular structure of a magnetic materials

prefLabel: GranularMicrostructure

Subclass of:

GranularStructure

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_75b995e0-2bac-5812-a7f6-f8c1731d1d5c

elucidation: Ensemble of grains of 1 or more grains

prefLabel: GranularStructure

Subclass of:

InducedMagneticAnisotropy

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_eac1f731-95b1-5f31-ab94-2615535ea223

elucidation: Uniaxial anisotropy induced by annealing in a magnetic field or by applying a stress

prefLabel: InducedMagneticAnisotropy

Subclass of:

InternalMagneticField

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_b727c447-8428-56ca-9e5a-5ced008760ad

elucidation: The internal field in the sample in the continuous medium approximation is the sum of the external field H′ and the demagnetizing field Hd

altLabel: H

prefLabel: InternalMagneticField

Subclass of:

InternalSusceptibility

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_ab8a0d3e-6d0f-599e-a119-a91aa99bd881

elucidation: Ratio of the change of magnetization and the internal field: M = chi H

altLabel: chi

prefLabel: InternalSusceptibility

wikidataReference: https://www.wikidata.org/wiki/Q691463

Subclass of:

IntrinsicMagneticProperties

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_af8d3fb8-20fe-5f9f-9f85-fd298e26ad7e

elucidation: Intrinsic magnetic properties refer to atomic-scale magnetism and depend on the crystal structure

prefLabel: IntrinsicMagneticProperties

Subclass of:

KneeField

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_ad0c038b-a09a-560c-b149-066de8f8e307

elucidation: The maximum working field - also named knee field H_K, is defined as the reverse internal field for which the magnetization is reduced by 10%; thus it corresponds to the point on the magnetization loop for which M = 0.9 Mr (J = 0.9 Jr)

altLabel: maximum working field, Hk

prefLabel: KneeField

Subclass of:

KneeFieldExternal

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_45a36799-2309-5097-969f-4e5c002ae2f0

elucidation: The maximum working field - also named knee field H_K, is defined as the reverse external field for which the magnetization is reduced by 10%; thus it corresponds to the point on the magnetization loop for which M = 0.9 Mr (J = 0.9 Jr)

altLabel: H’k

prefLabel: KneeFieldExternal

Subclass of:

LatticeConstantA

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_ef314f95-f3b5-5cb7-ac56-7bfc54f0d955

elucidation: The length of lattice vectors a, where lattice vectors a, b and c defines the unit cell

IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=561-07-13

altLabel: LatticeParameterA

prefLabel: LatticeConstantA

wikidataReference: https://www.wikidata.org/wiki/Q625641

wikipediaReference: https://en.wikipedia.org/wiki/Lattice_constant

Subclass of:

LatticeConstantAlpha

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_b2a130c3-9688-5358-94ca-f226b85b3009

elucidation: The angle between lattice vectors b and c, where lattice vectors a, b and c defines the unit cell,

altLabel: LatticeParameterAlpha

prefLabel: LatticeConstantAlpha

wikidataReference: https://www.wikidata.org/wiki/Q625641

Subclass of:

LatticeConstantB

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_a1f03bbf-c503-5759-9a26-2562527c0db2

elucidation: The length of lattice vectors b, where lattice vectors a, b and c defines the unit cell

IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=561-07-13

altLabel: LatticeParameterB

prefLabel: LatticeConstantB

wikidataReference: https://www.wikidata.org/wiki/Q625641

wikipediaReference: https://en.wikipedia.org/wiki/Lattice_constant

Subclass of:

LatticeConstantBeta

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_2ca16b3d-f83e-583c-8292-beb6473ea021

elucidation: The angle between lattice vectors a and c, where lattice vectors a, b and c defines the unit cell,

altLabel: LatticeParameterBeta

prefLabel: LatticeConstantBeta

wikidataReference: https://www.wikidata.org/wiki/Q625641

Subclass of:

LatticeConstantC

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_9977edfa-2b42-55e4-bea0-f39fadca7126

elucidation: The length of lattice vectors c, where lattice vectors a, b and c defines the unit cell

IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=561-07-13

altLabel: LatticeParameterC

prefLabel: LatticeConstantC

wikidataReference: https://www.wikidata.org/wiki/Q625641

wikipediaReference: https://en.wikipedia.org/wiki/Lattice_constant

Subclass of:

LatticeConstantGamma

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_a205766b-7c02-5c56-90e5-96c553c316c8

elucidation: The angle between lattice vectors a and b, where lattice vectors a, b and c defines the unit cell,

altLabel: LatticeParameterGamma

prefLabel: LatticeConstantGamma

wikidataReference: https://www.wikidata.org/wiki/Q625641

Subclass of:

LineEnergy

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_70f92e7c-fa16-51d5-9ca0-5ad635cb1322

elucidation: Energy per unit length.

prefLabel: LineEnergy

Subclass of:

LocalCoercivity

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_17f52ffb-c461-546a-8af6-299a506c8657

elucidation: local coercive field measured with the magneto-optic Kerr effect

prefLabel: LocalCoercivity

Subclass of:

LocalLatticeConstantA

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_c6ed4948-e599-5f09-aa07-b70121c41fcf

elucidation: The length of lattice vectors a, where lattice vectors a, b and c defines the unit cell, measured locally

prefLabel: LocalLatticeConstantA

Subclass of:

LocalLatticeConstantC

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_dbb7c1bc-034f-5f4b-9329-d23ed8915961

elucidation: The length of lattice vectors c, where lattice vectors a, b and c defines the unit cell, measured locally

prefLabel: LocalLatticeConstantC

Subclass of:

LocalReflectivity

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_c44c0546-452e-592f-b6bc-27a64e79244c

elucidation: local reflectivity measured with the magneto-optic Kerr effect

prefLabel: LocalReflectivity

Subclass of:

LocalThickness

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_efffe3e8-6bd8-5944-ba38-6facf656c61d

elucidation: The thickness of the film measured locally

prefLabel: LocalThickness

Subclass of:

LocalXrayDiffractionData

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_6aac026a-3928-5c21-9bb6-94497607bef2

elucidation: local X ray diffraction data

prefLabel: LocalXrayDiffractionData

Subclass of:

Magnet

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_099b796d-3163-56c7-bc90-3a304256ca5d

elucidation: Piece of matter made of one or more magnetic materials.

IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=151-14-06

prefLabel: Magnet

wikidataReference: https://www.wikidata.org/wiki/Q11421

wikipediaReference: https://en.wikipedia.org/wiki/Magnet

Subclass of:

MagneticAnisotropy

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_3a63baaf-4d7c-5ea5-93ce-9c8917a3290c

elucidation: Magnetic anisotropy means that the magnetic properties depend on the direction in which they are measured.

IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=221-01-08

prefLabel: MagneticAnisotropy

wikipediaReference: https://en.wikipedia.org/wiki/Magnetic_anisotropy

Subclass of:

MagneticHysteresisProperties

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_14a12902-9845-5be6-bd0b-511dcea31985

elucidation: The essential practical characteristic of any ferromagnetic material is the irreversible nonlinear response of magnetization M to an imposed magnetic field H. This response is given by the hysteresis loop. The charactertics of hystereis loop are known as hysteresis properties.

Instead of M(H), other quantities can be used to plot a hystereis loop.

M(H): Magnetization as function of the internal field. M(H’): Magnetization as function of the external field.

J(H): Magnetic polarization as function of the internal field. J(H’): Magnetic polarization as function of the external field.

B(H): Magnetic flux density as function of the internal field. B(H’): Magnetic flux density as function of the external field.

prefLabel: MagneticHysteresisProperties

Subclass of:

MagneticMaterial

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_c5ca93ce-ad27-5f4a-95ef-aca0990c6937

elucidation: Magnetically ordered solids which have atomic magnetic moments due to unpaired electrons.

prefLabel: MagneticMaterial

wikidataReference: https://www.wikidata.org/wiki/Q11587827

Subclass of:

MagneticMomementPerUnitMass

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_8ffd7d16-848a-5e89-a553-0b5bb99971c4

elucidation: Magnetic moment per unit mass, sigma

altLabel: sigma, MassMagnetization, SpecificMagneticMoment

comment: The magnetization is obtained by multiplying sigma with the density

prefLabel: MagneticMomementPerUnitMass

Subclass of:

MagnetocrystallineAnisotropy

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_c0a72108-de97-5dff-a830-e4b617adaeef

elucidation: Magnetocrystalline anisotropy is an intrinsic property. The magnetization process is different when the field is applied along different crystallographic directions, and the anisotropy reflects the crystal symmetry. Its origin is in the crystal-field interaction and spin-orbit coupling, or else the interatomic dipole–dipole interaction.

prefLabel: MagnetocrystallineAnisotropy

wikidataReference: https://www.wikidata.org/wiki/Q6731660

wikipediaReference: https://en.wikipedia.org/wiki/Magnetocrystalline_anisotropy

Subclass of:

MagnetocrystallineAnisotropyConstantK1

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_2bb87117-30f9-5b3a-b406-731836a3902f

elucidation: The magnetocrystalline constant K1 for tetragonal or hexagonal crystals.

altLabel: K1

comment: Ea = K1 sin^2(phi) + K2 sin^4(phi) where Ea is the is the anisotropy energy density and phi is the angle of the magnetization with respect to the c-axis of the crystal.

prefLabel: MagnetocrystallineAnisotropyConstantK1

wikipediaReference: https://en.wikipedia.org/wiki/Magnetocrystalline_anisotropy

Subclass of:

MagnetocrystallineAnisotropyConstantK1c

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_527989d5-7417-5d94-83bf-4db785827a88

elucidation: The magnetocrystalline constant K1c for cubic crystals.

altLabel: K1

comment: Ea = K1c(a1²a2²+a2²a3²+a1²a3²)+K1c(a1²a2²a3²) where Ea is the anisotropy energy density and a1,a2,a3 are the direction cosines of the magnetization

prefLabel: MagnetocrystallineAnisotropyConstantK1c

wikipediaReference: https://en.wikipedia.org/wiki/Magnetocrystalline_anisotropy

Subclass of:

MagnetocrystallineAnisotropyConstantK1c

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_c4aefa50-a3d0-548d-96ea-dd863ba27234

elucidation: The magnetocrystalline constant K2c for cubic crystals

altLabel: K1

comment: Ea = K1c(a1²a2²+a2²a3²+a1²a3²)+K1c(a1²a2²a3²) where Ea is the anisotropy energy density and a1,a2,a3 are the direction cosines of the magnetization

prefLabel: MagnetocrystallineAnisotropyConstantK1c

wikipediaReference: https://en.wikipedia.org/wiki/Magnetocrystalline_anisotropy

Subclass of:

MagnetocrystallineAnisotropyConstantK2

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_675fa9ea-408a-51f6-a001-2e6715568a71

elucidation: The magnetocrystalline constant K2 for tetragonal or hexagonal crystals.

altLabel: K2

comment: Ea = K1 sin^2(phi) + K2 sin^4(phi) where Ea is the is the anisotropy energy density and phi is the angle of the magnetization with respect to the c-axis of the crystal.

prefLabel: MagnetocrystallineAnisotropyConstantK2

wikipediaReference: https://en.wikipedia.org/wiki/Magnetocrystalline_anisotropy

Subclass of:

MagnetocrystallineAnisotropyEnergy

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_e9e3b7d2-d4fa-5140-88dc-2f0d60cf6d15

elucidation: The magnetocrystalline anisotropy energy density.

altLabel: MAE

prefLabel: MagnetocrystallineAnisotropyEnergy

wikipediaReference: https://en.wikipedia.org/wiki/Magnetocrystalline_anisotropy

Subclass of:

Magnetoresistance

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_5be2f193-36d0-5aac-90b8-52db055d8252

elucidation: Change of the resistivity of a substance due to an applied magnetic field.

Magnetoresistance can be defined as MR = [ϱ(B)-ϱ(0)]/ϱ(0).

IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-83

altLabel: MR

prefLabel: Magnetoresistance

wikidataReference: https://www.wikidata.org/wiki/Q58347

wikipediaReference: https://en.wikipedia.org/wiki/Magnetoresistance

Subclass of:

MainMagneticPhase

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_572b0885-bd40-51ad-8520-d5477c6b9990

elucidation: Main phase of the magnet

prefLabel: MainMagneticPhase

Subclass of:

MassSusceptibility

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_49768356-1ec9-5316-adbc-81001ecd770f

elucidation: Ratio of the change of the magnetic moment per unit mass and the internal field: sigma = chi_m H

altLabel: chi_m

comment: magnetic susceptibility per mass density

prefLabel: MassSusceptibility

wikidataReference: https://www.wikidata.org/wiki/Q104655916

Subclass of:

MaximumEnergyProduct

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_e1028129-c23e-57ac-9174-2f34ddbf3926

elucidation: The value of the maximum energy product (BH)max is deduced from a plot of BH(B) for all points of the second quadrant of the B-H hysteresis loop. BH varies with B going through a maximum value (BH)max for a particular value of B.

(BH)max equals the area of the largest second-quadrant rectangle which fits under the B-H loop.

The maximum energy product is considered to be the best single index of quality of a permanent magnet material. It is twice the energy stored in the stray field of the magnet of optimal shape.

altLabel: (BH)max

prefLabel: MaximumEnergyProduct

wikipediaReference: https://en.wikipedia.org/wiki/Maximum_energy_product

Subclass of:

MeanGrainSize

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_8d2f8eff-85d7-5819-8dcd-a77674c40aff

elucidation: The mean of the grain diameter of grains. Diameter is the diameter of a sphere with equivalent volume

prefLabel: MeanGrainSize

Subclass of:

MultilayerMagnet

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_4ee603fc-7a1e-51f0-bf75-8e66f9a5539b

elucidation: Piece of matter made of stacked layers of one or more magnetic materials.

prefLabel: MultilayerMagnet

Subclass of:

NonMagneticMaterial

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_1bda25f0-3b11-5547-a27c-4e3a638b740a

elucidation: A material which is non-magnetic

prefLabel: NonMagneticMaterial

Subclass of:

RectangularCuboid

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_b98abf93-8054-5955-bb06-076e22b0b4c7

elucidation: A rectangular cuboid is a special case of a cuboid with rectangular faces in which all of its dihedral angles are right angles.

prefLabel: RectangularCuboid

wikidataReference: https://www.wikidata.org/wiki/Q262959

wikipediaReference: https://en.wikipedia.org/wiki/Rectangular_cuboid

Subclass of:

Reflectivity

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_d6020727-daa9-5379-8ec4-ba1a02f7d0b6

elucidation: capacity of an object to reflect light

altLabel: Reflectance, R

prefLabel: Reflectivity

wikidataReference: https://www.wikidata.org/wiki/Q663650

wikipediaReference: https://en.wikipedia.org/wiki/Reflectance

Subclass of:

Remanence

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_8fc78216-4859-53c2-b41e-e38062b04054

elucidation: The remanence Mr which remains when the applied field is restored to zero in the hysteresis loop

IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=221-02-40

altLabel: Remanent magnetization, Mr

prefLabel: Remanence

wikidataReference: https://www.wikidata.org/wiki/Q4150950

wikipediaReference: https://en.wikipedia.org/wiki/Remanence

Subclass of:

RemanentMagneticPolarization

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_538226cb-bebb-53e5-bf37-0f12226228be

elucidation: The remanent magnetic polarization Jr which remains when the applied field is restored to zero in the hysteresis loop

IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=221-02-39

altLabel: Jr

prefLabel: RemanentMagneticPolarization

Subclass of:

SampleGeometry

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_b7ebd85f-36aa-540a-b8a9-e2c1094f27f1

elucidation: The size and shape of the magnet

prefLabel: SampleGeometry

Subclass of:

SecondaryPhase

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_5394673b-027e-5afc-bc6f-f72df5ed40a1

elucidation: An additional phase within a magnet, for example soft inclusions or triple junctions

prefLabel: SecondaryPhase

Subclass of:

ShapeAnisotropy

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_f8f03807-d6b6-5ebf-8e0b-418311e8e1e5

elucidation: The difference in magnetostatic energy when an elongated particle is magnetized along its short and long axis.

comment: Shape anisotropy is restricted to small particles, where the inter-atomic exchange ensures a uniform magnetization.

prefLabel: ShapeAnisotropy

Subclass of:

ShapeAnisotropyConstant

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_ac6edd90-c273-5203-836b-82462863f2c8

elucidation: The energy density of a small particle given by

K1sh = (mu_0/4)(1-3D)Ms²

where mu_0 is the vacuum magnetic permeability and D is the DemagnetizingFactor and Ms is the spontaneous magnetization

altLabel: K1sh

prefLabel: ShapeAnisotropyConstant

Subclass of:

SigmaGrainSize

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_5a48bd5a-20ee-5399-ac29-c488c1c7ad73

elucidation: The standard deviation of the grain diameter of grains. Diameter is the diameter of a sphere with equivalent volume

prefLabel: SigmaGrainSize

Subclass of:

SpaceGroup

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_5d5fbcc0-2738-5cb8-9157-a0fbe50eebb6

elucidation: A spacegroup is the symmetry group off all symmetry operations that apply to a crystal structure.

The complete symmetry of a crystal, including the Bravais lattice and any translational symmetry elements, is given by one of the 240 space groups.

A space group is identified by its Hermann-Mauguin symbol or space group number (and setting) in the International tables of Crystallography.

prefLabel: SpaceGroup

wikidataReference: https://www.wikidata.org/wiki/Q899033

wikipediaReference: https://en.wikipedia.org/wiki/Space_group

Subclass of:

SpacerLayer

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_1b980f86-4116-5af8-bc45-14b44d88eeb5

elucidation: Nonmagnetic thin film materials

prefLabel: SpacerLayer

Subclass of:

SpontaneousMagneticPolarisation

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_57873439-dfa4-5b74-aec7-d530376ae11c

elucidation: She spontaneous magnetic polarisation, Js, of a ferromagnet is the result of alignment of the magnetic moments of individual atoms. Js exists within a domain of a ferromagnet.

altLabel: Js

prefLabel: SpontaneousMagneticPolarisation

Subclass of:

SpontaneousMagnetization

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_032731f8-874d-5efb-9c9d-6dafaa17ef25

elucidation: The spontaneous magnetization, Ms, of a ferromagnet is the result of alignment of the magnetic moments of individual atoms.. Ms exists within a domain of a ferromagnet.

IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=221-02-41

altLabel: Ms

prefLabel: SpontaneousMagnetization

wikipediaReference: https://en.wikipedia.org/wiki/Spontaneous_magnetization

Subclass of:

StackingSquence

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_d70e364c-7ab7-5329-9964-17a5e45bbb9d

elucidation: Sequence of layer in a multilayer stack

prefLabel: StackingSquence

Subclass of:

SwitchingFieldCoercivity

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_bc54c47f-8560-516a-b95b-cce9f1b7344f

elucidation: Defined by the maximum slope of the descending branch of the M-H hysteresis loop, with H the internal field.

altLabel: Hsw

comment: This field is often used when analysing the temperature dependent coercivity for deriving microstructural parameters.

prefLabel: SwitchingFieldCoercivity

Subclass of:

SwitchingFieldCoercivityExternal

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_234a6193-f057-556f-bfcd-38efde3aafc4

elucidation: Defined by the maximum slope of the descending branch of the M-H’ hysteresis loop, with H’ the external field.

altLabel: H’sw

prefLabel: SwitchingFieldCoercivityExternal

Subclass of:

ThinfilmMagnet

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_613e4315-d58f-5b5d-82ce-8cb76bd1b0aa

elucidation: Piece of matter made of one or more magnetic material in form a thin film.

prefLabel: ThinfilmMagnet

Subclass of:

UniaxialAnisotropyConstant

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_49a882d1-9ce7-522b-91e7-3a460f25f5ac

elucidation: The change of energy with angle of the magnetization from the preferred direction is expressed with the uniaxial anisotropy constant Ea = Ku sin²(theta)

altLabel: Ku

prefLabel: UniaxialAnisotropyConstant

Subclass of:

UniaxialMagneticAnisotropy

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_6d90a9fe-5ff3-563b-b33b-ae5a4e1a88d8

elucidation: The anisotropy can be described as uniaxial when the anisotropy energy E depends on only a single angle, the angle between the magnetization vector and the easy direction of magnetization.

prefLabel: UniaxialMagneticAnisotropy

Subclass of:

UniaxialMagnetocrystallineAnisotropy

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_70efe904-df98-5f7c-9f45-45af722dfeb7

elucidation: The uniaxial anisotropy depends on only a single angle, the angle magnetization vector and the c axis

prefLabel: UniaxialMagnetocrystallineAnisotropy

Subclass of:

XRDCounts

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_90e967b9-91d4-59d3-bcdc-b6d602f734cc

elucidation: counts as a function of 2theta angle obtained from X-ray diffraction

prefLabel: XRDCounts

Subclass of:

XRDTwoThetaAngles

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_368c84bc-2f5d-5d2b-a32b-9fc5a7411ee4

elucidation: the 2theta angles at which the counts are measured during X-ray diffraction

prefLabel: XRDTwoThetaAngles

Subclass of:

XrayDiffractionData

IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_38684bd3-8137-5af1-9c0d-b32bcf58fefc

elucidation: counts as a function of 2theta angle obtained from X-ray diffraction

prefLabel: XrayDiffractionData

Subclass of: