Abstract:
An EMMO-based ontology for magnetic materials. Created within the EU project Magnetic Multiscale Mdelling Suite (MaMMoS), Grant number 101135546 (HORIZON-CL4-2023-DIGITAL-EMERGING-01) MagneticMaterial is released under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Health and Digital Executive Agency (HADEA). Neither the European Union nor the granting authority can be held responsible for them.
Content
The MaMMoS magnetic materials ontology is a domain ontology which uses EMMO as top level ontology. The magnetic material ontology reflects the hierarchical structure of the magnet. It reveals its physical parts at different length scales.
A magnet is functionally defined material. Possible subclasses of a magnet are bulk magnet, thin film magnet, or multilayer magnet. A magnet may have a granular microstructure.
The spatial parts of the granular microstructure are the main magnetic phase, the grain boundary phase, and secondary phase.
The granular microstructure constists of a main magnetic phase, possible grain boundary phases and secondary phases.
The main magnetic phase is a magnetic material. A magnetic material has intrinsic magnetic properties and a chemical composition. A magnetic material can be amorphous or crystalline.
A crystalline magnetic material is a granular structure. Properties of the granular structure are a crystal structure and a grain size distribution. X-ray diffraction data may have been measured.
The intrinsic magnetic properties depend on the chemical composition and the crystal structure. They are a property of the magnetic material.
Whereas the intrinsic magnetic properties are a property of a magnetic material, the extrinsic magnetic properties depend on the microstructure and shape of the magnet. They are a property of the magnet. An important subset of the extrinsic magnetic properties are the magnetic hysteresis properties.
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_98f7a685-fa5a-54f1-8504-f398047f3ab6
elucidation: Ratio of the change of magnetic flux and the internal field: B = mu H
IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-28
altLabel: absolute permeability, mu
prefLabel: AbsolutePermeability
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_694b3915-3326-5fb2-87a1-20ccf1dc79dc
elucidation: Any amorphous structure entails a distribution of nearest-neighbour environments and bond lengths for a given magnetic atom, described by the radial distribution function and higher-order correlation functions. These distributions lead to a distribution of site moments, exchange interactions, dipolar and crystal fields, all of which influence the nature of the magnetic order
prefLabel: AmorphousMagneticMaterial
wikipediaReference: https://en.wikipedia.org/wiki/Amorphous_magnet
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_e838288f-b0b4-5bcb-9889-06b2a10d3ccf
elucidation: Unit of the magnetic moment per unit mass: Am²/kg
prefLabel: AmpereSquareMetrePerKilogram
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_cd58ebab-4351-5d0d-ad45-bbddd6efead3
elucidation: The anisotropy field Ha is defined as the field needed to saturate the magnetization of a uniaxial crystal in a hard direction Ha = 2 Ku/Js
altLabel: Ha
comment: Beware of taking the idea of anisotropy field too literally. Except at small angles, the energy variation in a field is not the same as the leading term in the anisotropy. A magnetic field defines an easy direction, not an easy axis.
prefLabel: AnisotropyField
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_d28323da-810f-5cbe-a770-eab7e7fdb493
elucidation: Piece of matter made of one or more magnetic material.
prefLabel: BulkMagnet
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_2b7f8b13-d0c3-590c-9851-ca89ce5b7395
elucidation: Volume of the unit cell.
altLabel: UnitCellVolume
prefLabel: CellVolume
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_69772e86-d7fb-5b43-9cd4-2f0770c6701f
elucidation: Defined as internal field on the B(H) loop where B = 0. It is also called flux coercivity BHc.
BHc depends on sample shape and has to be corrected for the demagnetizing field.
altLabel: BHc
prefLabel: CoercivityBHc
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_a4bc4536-f381-5bcd-b6ca-34fb1a913efd
elucidation: Defined as external field on the B(H’) loop where B = 0. H’ is the external field.
altLabel: BH’c
prefLabel: CoercivityBHcExternal
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_0d67d6c5-a8a7-57d4-930a-e99412baa2c2
elucidation: The internal magnetic held -Hc at which the macroscopic magnetization vanishes is the coercivity or coercive force.
Although it is not an intrinsic property in our sense of the term, the M-H loop coercivity Hc is sometimes referred to as ‘intrinsic’ coercivity.
altLabel: Coercive field, Hc
prefLabel: CoercivityHc
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_fe101d1d-f1f7-54f8-886b-fa6d6052ce98
elucidation: The external magnetic held -H’c at which the macroscopic magnetization vanishes. The coercivity on M(H’) loop, where H’ is the external field.
altLabel: H’c
prefLabel: CoercivityHcExternal
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_2c96e798-57dc-5c12-ad10-f3ec261549d3
elucidation: Description of ordered arrangement of atoms
prefLabel: CrystalStructure
wikidataReference: https://www.wikidata.org/wiki/Q895901
wikipediaReference: https://en.wikipedia.org/wiki/Crystal_structure
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_aaa107b8-4dd9-5fc8-b135-a604a0cb38b1
elucidation: Magnetic material with crystalline structure
prefLabel: CrystallineMagneticMaterial
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_4f709756-86ee-5307-880a-696d08ae9732
elucidation: relative direction of a crystallite in space with respect to another, disregarding distance
altLabel: crystal orientation
prefLabel: CrystallographicOrientation
wikidataReference: https://www.wikidata.org/wiki/Q11799166
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_af109e05-abbd-5964-8e39-8249b9eda7da
elucidation: Cubic crystals anisotropy
prefLabel: CubicMagnetocrystallineAnisotropy
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_0f2b5cc9-d00a-5030-8448-99ba6b7dfd1e
elucidation: For a uniformly magnetized ellipsoid with magnetization along a major axis the demagnetizing field is Hd = -N M.
The principal components of the diagonal demagnetizing tensor form the demagnetizing factors. Only two of the three are independent because the demagnetizing tensor has unit trace Nx + Ny + Nz = 1.
IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-63
altLabel: N, D
comment: H = H’ - DM, where D is the demagneting factor, M is the magnetization, and H is the internal field
prefLabel: DemagnetizingFactor
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_ace0a9bf-0b4d-5cd2-be02-3c3b816a279b
elucidation: The magnetic field produced by the magnetization distribution of the sample itself
altLabel: Hd
prefLabel: DemagnetizingField
wikidataReference: https://www.wikidata.org/wiki/Q5255001
wikipediaReference: https://en.wikipedia.org/wiki/Demagnetizing_field
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_af13f0cd-63c7-50f5-9f20-59d54fc09710
elucidation: Standard deviation of the grain misalignment angle in an ensembles of misaligned magnetic particles
This refers not only to isotropic magnets but also to partly aligned or textured magnets, where the easy-axis distribution is described by a function P(theta).
prefLabel: EasyAxisDistributionSigma
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_56258d3a-f2ee-554e-af99-499dd8620457
elucidation: Energy Density.
prefLabel: EnergyDensity
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_bc4030ff-d125-5e63-b8f8-b2ef3d08b6d5
elucidation: three angles introduced by Leonhard Euler to describe the orientation of a rigid body with respect to a fixed coordinate system
prefLabel: EulerAngles
wikidataReference: https://www.wikidata.org/wiki/Q751290
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_526ed2a5-a017-590e-8eb8-8a900f2b3b78
elucidation: Exchange constant, A, in the continuum theory of micromagnetism.
The exchange stiffness A is related to the Curie temperature TC: A is roughly k_B T_c/(2 a_0), where a_0 is the lattice parameter in a simple structure.
altLabel: A
prefLabel: ExchangeStiffnessConstant
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_da08f0d3-fe19-58bc-8fb6-ecc8992d5eb3
elucidation: The external field H′, acting on a sample that is produced by electric currents or the stray field of magnets outside the sample volume, is often called the applied field.
altLabel: AppliedMagneticField, H’
prefLabel: ExternalMagneticField
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_d96c3ad6-5fcc-5628-93b6-bfac2fca8249
elucidation: Ratio of the change of magnetization and the external field: M = chi’ H’
altLabel: chi’
prefLabel: ExternalSusceptibility
wikidataReference: https://www.wikidata.org/wiki/Q691463
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_8a0c8d0a-3dc7-5f3f-ab20-24b38d188827
elucidation: Extrinsic magnetic Properties depend on the microstructure.
prefLabel: ExtrinsicMagneticProperties
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_aa999d91-076f-512a-85a0-c2f751c083b1
elucidation: Geometric shape.
Two extrinsic properties, the remanence Mr and coercivity Hc, which depend on the sample shape
prefLabel: GeometricShape
wikidataReference: https://www.wikidata.org/wiki/Q207961
wikipediaReference: https://en.wikipedia.org/wiki/Shape
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_0213900b-ab6d-56be-82fb-4db874974de1
elucidation: Spatial extension along the princial axes.
prefLabel: GeometricalSize
wikipediaReference: https://en.wikipedia.org/wiki/Size
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_b0f0e57e-464d-562f-80ec-b216c92d5e88
elucidation: A grain is a small or even microscopic crystal which forms, for example, during the cooling of many materials.
altLabel: Crystallite
prefLabel: Grain
wikidataReference: https://www.wikidata.org/wiki/Q899604
wikipediaReference: https://en.wikipedia.org/wiki/Crystallite
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_5408b3d3-4971-564b-a34c-53e4e3c3f44d
elucidation: Standard deviation of the angle of the easy axis with respect to the alignment direction
prefLabel: GrainMisalignmentAngle
wikidataReference: https://www.wikidata.org/wiki/Q117089304
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_ada88738-c901-5d83-884b-5f84d27ce527
elucidation: Function representing relative sizes of grains in a system.
Given by its mean and standard deviation of a lognormal distribution
altLabel: ParticleSizeDistribution
prefLabel: GrainSizeDistribution
wikidataReference: https://www.wikidata.org/wiki/Q2054937
wikipediaReference: https://en.wikipedia.org/wiki/Particle-size_distribution
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_329e0b77-853d-5615-8df9-9bee0fd1189e
elucidation: Material separating grains in a microstructure
comment: In permanent magnets, the grain boundary phase inhibits the propagation of the magnetic reversal from grain to grain.
prefLabel: GrainboundaryPhase
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_cf5261fe-bdab-5c7b-b6a8-f9a313687bc2
elucidation: The granular structure of a magnetic materials
prefLabel: GranularMicrostructure
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_75b995e0-2bac-5812-a7f6-f8c1731d1d5c
elucidation: Ensemble of grains of 1 or more grains
prefLabel: GranularStructure
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_eac1f731-95b1-5f31-ab94-2615535ea223
elucidation: Uniaxial anisotropy induced by annealing in a magnetic field or by applying a stress
prefLabel: InducedMagneticAnisotropy
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_b727c447-8428-56ca-9e5a-5ced008760ad
elucidation: The internal field in the sample in the continuous medium approximation is the sum of the external field H′ and the demagnetizing field Hd
altLabel: H
prefLabel: InternalMagneticField
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_ab8a0d3e-6d0f-599e-a119-a91aa99bd881
elucidation: Ratio of the change of magnetization and the internal field: M = chi H
altLabel: chi
prefLabel: InternalSusceptibility
wikidataReference: https://www.wikidata.org/wiki/Q691463
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_af8d3fb8-20fe-5f9f-9f85-fd298e26ad7e
elucidation: Intrinsic magnetic properties refer to atomic-scale magnetism and depend on the crystal structure
prefLabel: IntrinsicMagneticProperties
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_ad0c038b-a09a-560c-b149-066de8f8e307
elucidation: The maximum working field - also named knee field H_K, is defined as the reverse internal field for which the magnetization is reduced by 10%; thus it corresponds to the point on the magnetization loop for which M = 0.9 Mr (J = 0.9 Jr)
altLabel: maximum working field, Hk
prefLabel: KneeField
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_45a36799-2309-5097-969f-4e5c002ae2f0
elucidation: The maximum working field - also named knee field H_K, is defined as the reverse external field for which the magnetization is reduced by 10%; thus it corresponds to the point on the magnetization loop for which M = 0.9 Mr (J = 0.9 Jr)
altLabel: H’k
prefLabel: KneeFieldExternal
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_ef314f95-f3b5-5cb7-ac56-7bfc54f0d955
elucidation: The length of lattice vectors
a
, where lattice vectors a
, b
and
c
defines the unit cell
IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=561-07-13
altLabel: LatticeParameterA
prefLabel: LatticeConstantA
wikidataReference: https://www.wikidata.org/wiki/Q625641
wikipediaReference: https://en.wikipedia.org/wiki/Lattice_constant
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_b2a130c3-9688-5358-94ca-f226b85b3009
elucidation: The angle between lattice vectors
b
and c
, where lattice vectors a
,
b
and c
defines the unit cell,
altLabel: LatticeParameterAlpha
prefLabel: LatticeConstantAlpha
wikidataReference: https://www.wikidata.org/wiki/Q625641
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_a1f03bbf-c503-5759-9a26-2562527c0db2
elucidation: The length of lattice vectors
b
, where lattice vectors a
, b
and
c
defines the unit cell
IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=561-07-13
altLabel: LatticeParameterB
prefLabel: LatticeConstantB
wikidataReference: https://www.wikidata.org/wiki/Q625641
wikipediaReference: https://en.wikipedia.org/wiki/Lattice_constant
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_2ca16b3d-f83e-583c-8292-beb6473ea021
elucidation: The angle between lattice vectors
a
and c
, where lattice vectors a
,
b
and c
defines the unit cell,
altLabel: LatticeParameterBeta
prefLabel: LatticeConstantBeta
wikidataReference: https://www.wikidata.org/wiki/Q625641
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_9977edfa-2b42-55e4-bea0-f39fadca7126
elucidation: The length of lattice vectors
c
, where lattice vectors a
, b
and
c
defines the unit cell
IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=561-07-13
altLabel: LatticeParameterC
prefLabel: LatticeConstantC
wikidataReference: https://www.wikidata.org/wiki/Q625641
wikipediaReference: https://en.wikipedia.org/wiki/Lattice_constant
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_a205766b-7c02-5c56-90e5-96c553c316c8
elucidation: The angle between lattice vectors
a
and b
, where lattice vectors a
,
b
and c
defines the unit cell,
altLabel: LatticeParameterGamma
prefLabel: LatticeConstantGamma
wikidataReference: https://www.wikidata.org/wiki/Q625641
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_70f92e7c-fa16-51d5-9ca0-5ad635cb1322
elucidation: Energy per unit length.
prefLabel: LineEnergy
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_17f52ffb-c461-546a-8af6-299a506c8657
elucidation: local coercive field measured with the magneto-optic Kerr effect
prefLabel: LocalCoercivity
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_c6ed4948-e599-5f09-aa07-b70121c41fcf
elucidation: The length of lattice vectors
a
, where lattice vectors a
, b
and
c
defines the unit cell, measured locally
prefLabel: LocalLatticeConstantA
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_dbb7c1bc-034f-5f4b-9329-d23ed8915961
elucidation: The length of lattice vectors
c
, where lattice vectors a
, b
and
c
defines the unit cell, measured locally
prefLabel: LocalLatticeConstantC
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_c44c0546-452e-592f-b6bc-27a64e79244c
elucidation: local reflectivity measured with the magneto-optic Kerr effect
prefLabel: LocalReflectivity
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_efffe3e8-6bd8-5944-ba38-6facf656c61d
elucidation: The thickness of the film measured locally
prefLabel: LocalThickness
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_6aac026a-3928-5c21-9bb6-94497607bef2
elucidation: local X ray diffraction data
prefLabel: LocalXrayDiffractionData
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_099b796d-3163-56c7-bc90-3a304256ca5d
elucidation: Piece of matter made of one or more magnetic materials.
IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=151-14-06
prefLabel: Magnet
wikidataReference: https://www.wikidata.org/wiki/Q11421
wikipediaReference: https://en.wikipedia.org/wiki/Magnet
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_3a63baaf-4d7c-5ea5-93ce-9c8917a3290c
elucidation: Magnetic anisotropy means that the magnetic properties depend on the direction in which they are measured.
IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=221-01-08
prefLabel: MagneticAnisotropy
wikipediaReference: https://en.wikipedia.org/wiki/Magnetic_anisotropy
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_14a12902-9845-5be6-bd0b-511dcea31985
elucidation: The essential practical characteristic of any ferromagnetic material is the irreversible nonlinear response of magnetization M to an imposed magnetic field H. This response is given by the hysteresis loop. The charactertics of hystereis loop are known as hysteresis properties.
Instead of M(H), other quantities can be used to plot a hystereis loop.
M(H): Magnetization as function of the internal field. M(H’): Magnetization as function of the external field.
J(H): Magnetic polarization as function of the internal field. J(H’): Magnetic polarization as function of the external field.
B(H): Magnetic flux density as function of the internal field. B(H’): Magnetic flux density as function of the external field.
prefLabel: MagneticHysteresisProperties
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_c5ca93ce-ad27-5f4a-95ef-aca0990c6937
elucidation: Magnetically ordered solids which have atomic magnetic moments due to unpaired electrons.
prefLabel: MagneticMaterial
wikidataReference: https://www.wikidata.org/wiki/Q11587827
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_8ffd7d16-848a-5e89-a553-0b5bb99971c4
elucidation: Magnetic moment per unit mass, sigma
altLabel: sigma, MassMagnetization, SpecificMagneticMoment
comment: The magnetization is obtained by multiplying sigma with the density
prefLabel: MagneticMomementPerUnitMass
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_c0a72108-de97-5dff-a830-e4b617adaeef
elucidation: Magnetocrystalline anisotropy is an intrinsic property. The magnetization process is different when the field is applied along different crystallographic directions, and the anisotropy reflects the crystal symmetry. Its origin is in the crystal-field interaction and spin-orbit coupling, or else the interatomic dipole–dipole interaction.
prefLabel: MagnetocrystallineAnisotropy
wikidataReference: https://www.wikidata.org/wiki/Q6731660
wikipediaReference: https://en.wikipedia.org/wiki/Magnetocrystalline_anisotropy
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_2bb87117-30f9-5b3a-b406-731836a3902f
elucidation: The magnetocrystalline constant K1 for tetragonal or hexagonal crystals.
altLabel: K1
comment: Ea = K1 sin^2(phi) + K2 sin^4(phi) where Ea is the is the anisotropy energy density and phi is the angle of the magnetization with respect to the c-axis of the crystal.
prefLabel: MagnetocrystallineAnisotropyConstantK1
wikipediaReference: https://en.wikipedia.org/wiki/Magnetocrystalline_anisotropy
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_527989d5-7417-5d94-83bf-4db785827a88
elucidation: The magnetocrystalline constant K1c for cubic crystals.
altLabel: K1
comment: Ea = K1c(a1²a2²+a2²a3²+a1²a3²)+K1c(a1²a2²a3²) where Ea is the anisotropy energy density and a1,a2,a3 are the direction cosines of the magnetization
prefLabel: MagnetocrystallineAnisotropyConstantK1c
wikipediaReference: https://en.wikipedia.org/wiki/Magnetocrystalline_anisotropy
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_c4aefa50-a3d0-548d-96ea-dd863ba27234
elucidation: The magnetocrystalline constant K2c for cubic crystals
altLabel: K1
comment: Ea = K1c(a1²a2²+a2²a3²+a1²a3²)+K1c(a1²a2²a3²) where Ea is the anisotropy energy density and a1,a2,a3 are the direction cosines of the magnetization
prefLabel: MagnetocrystallineAnisotropyConstantK1c
wikipediaReference: https://en.wikipedia.org/wiki/Magnetocrystalline_anisotropy
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_675fa9ea-408a-51f6-a001-2e6715568a71
elucidation: The magnetocrystalline constant K2 for tetragonal or hexagonal crystals.
altLabel: K2
comment: Ea = K1 sin^2(phi) + K2 sin^4(phi) where Ea is the is the anisotropy energy density and phi is the angle of the magnetization with respect to the c-axis of the crystal.
prefLabel: MagnetocrystallineAnisotropyConstantK2
wikipediaReference: https://en.wikipedia.org/wiki/Magnetocrystalline_anisotropy
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_e9e3b7d2-d4fa-5140-88dc-2f0d60cf6d15
elucidation: The magnetocrystalline anisotropy energy density.
altLabel: MAE
prefLabel: MagnetocrystallineAnisotropyEnergy
wikipediaReference: https://en.wikipedia.org/wiki/Magnetocrystalline_anisotropy
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_5be2f193-36d0-5aac-90b8-52db055d8252
elucidation: Change of the resistivity of a substance due to an applied magnetic field.
Magnetoresistance can be defined as MR = [ϱ(B)-ϱ(0)]/ϱ(0).
IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-83
altLabel: MR
prefLabel: Magnetoresistance
wikidataReference: https://www.wikidata.org/wiki/Q58347
wikipediaReference: https://en.wikipedia.org/wiki/Magnetoresistance
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_572b0885-bd40-51ad-8520-d5477c6b9990
elucidation: Main phase of the magnet
prefLabel: MainMagneticPhase
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_49768356-1ec9-5316-adbc-81001ecd770f
elucidation: Ratio of the change of the magnetic moment per unit mass and the internal field: sigma = chi_m H
altLabel: chi_m
comment: magnetic susceptibility per mass density
prefLabel: MassSusceptibility
wikidataReference: https://www.wikidata.org/wiki/Q104655916
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_e1028129-c23e-57ac-9174-2f34ddbf3926
elucidation: The value of the maximum energy product (BH)max is deduced from a plot of BH(B) for all points of the second quadrant of the B-H hysteresis loop. BH varies with B going through a maximum value (BH)max for a particular value of B.
(BH)max equals the area of the largest second-quadrant rectangle which fits under the B-H loop.
The maximum energy product is considered to be the best single index of quality of a permanent magnet material. It is twice the energy stored in the stray field of the magnet of optimal shape.
altLabel: (BH)max
prefLabel: MaximumEnergyProduct
wikipediaReference: https://en.wikipedia.org/wiki/Maximum_energy_product
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_8d2f8eff-85d7-5819-8dcd-a77674c40aff
elucidation: The mean of the grain diameter of grains. Diameter is the diameter of a sphere with equivalent volume
prefLabel: MeanGrainSize
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_4ee603fc-7a1e-51f0-bf75-8e66f9a5539b
elucidation: Piece of matter made of stacked layers of one or more magnetic materials.
prefLabel: MultilayerMagnet
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_1bda25f0-3b11-5547-a27c-4e3a638b740a
elucidation: A material which is non-magnetic
prefLabel: NonMagneticMaterial
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_b98abf93-8054-5955-bb06-076e22b0b4c7
elucidation: A rectangular cuboid is a special case of a cuboid with rectangular faces in which all of its dihedral angles are right angles.
prefLabel: RectangularCuboid
wikidataReference: https://www.wikidata.org/wiki/Q262959
wikipediaReference: https://en.wikipedia.org/wiki/Rectangular_cuboid
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_d6020727-daa9-5379-8ec4-ba1a02f7d0b6
elucidation: capacity of an object to reflect light
altLabel: Reflectance, R
prefLabel: Reflectivity
wikidataReference: https://www.wikidata.org/wiki/Q663650
wikipediaReference: https://en.wikipedia.org/wiki/Reflectance
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_8fc78216-4859-53c2-b41e-e38062b04054
elucidation: The remanence Mr which remains when the applied field is restored to zero in the hysteresis loop
IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=221-02-40
altLabel: Remanent magnetization, Mr
prefLabel: Remanence
wikidataReference: https://www.wikidata.org/wiki/Q4150950
wikipediaReference: https://en.wikipedia.org/wiki/Remanence
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_538226cb-bebb-53e5-bf37-0f12226228be
elucidation: The remanent magnetic polarization Jr which remains when the applied field is restored to zero in the hysteresis loop
IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=221-02-39
altLabel: Jr
prefLabel: RemanentMagneticPolarization
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_b7ebd85f-36aa-540a-b8a9-e2c1094f27f1
elucidation: The size and shape of the magnet
prefLabel: SampleGeometry
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_5394673b-027e-5afc-bc6f-f72df5ed40a1
elucidation: An additional phase within a magnet, for example soft inclusions or triple junctions
prefLabel: SecondaryPhase
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_f8f03807-d6b6-5ebf-8e0b-418311e8e1e5
elucidation: The difference in magnetostatic energy when an elongated particle is magnetized along its short and long axis.
comment: Shape anisotropy is restricted to small particles, where the inter-atomic exchange ensures a uniform magnetization.
prefLabel: ShapeAnisotropy
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_ac6edd90-c273-5203-836b-82462863f2c8
elucidation: The energy density of a small particle given by
K1sh = (mu_0/4)(1-3D)Ms²
where mu_0 is the vacuum magnetic permeability and D is the DemagnetizingFactor and Ms is the spontaneous magnetization
altLabel: K1sh
prefLabel: ShapeAnisotropyConstant
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_5a48bd5a-20ee-5399-ac29-c488c1c7ad73
elucidation: The standard deviation of the grain diameter of grains. Diameter is the diameter of a sphere with equivalent volume
prefLabel: SigmaGrainSize
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_5d5fbcc0-2738-5cb8-9157-a0fbe50eebb6
elucidation: A spacegroup is the symmetry group off all symmetry operations that apply to a crystal structure.
The complete symmetry of a crystal, including the Bravais lattice and any translational symmetry elements, is given by one of the 240 space groups.
A space group is identified by its Hermann-Mauguin symbol or space group number (and setting) in the International tables of Crystallography.
prefLabel: SpaceGroup
wikidataReference: https://www.wikidata.org/wiki/Q899033
wikipediaReference: https://en.wikipedia.org/wiki/Space_group
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_1b980f86-4116-5af8-bc45-14b44d88eeb5
elucidation: Nonmagnetic thin film materials
prefLabel: SpacerLayer
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_57873439-dfa4-5b74-aec7-d530376ae11c
elucidation: She spontaneous magnetic polarisation, Js, of a ferromagnet is the result of alignment of the magnetic moments of individual atoms. Js exists within a domain of a ferromagnet.
altLabel: Js
prefLabel: SpontaneousMagneticPolarisation
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_032731f8-874d-5efb-9c9d-6dafaa17ef25
elucidation: The spontaneous magnetization, Ms, of a ferromagnet is the result of alignment of the magnetic moments of individual atoms.. Ms exists within a domain of a ferromagnet.
IECEntry: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=221-02-41
altLabel: Ms
prefLabel: SpontaneousMagnetization
wikipediaReference: https://en.wikipedia.org/wiki/Spontaneous_magnetization
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_d70e364c-7ab7-5329-9964-17a5e45bbb9d
elucidation: Sequence of layer in a multilayer stack
prefLabel: StackingSquence
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_bc54c47f-8560-516a-b95b-cce9f1b7344f
elucidation: Defined by the maximum slope of the descending branch of the M-H hysteresis loop, with H the internal field.
altLabel: Hsw
comment: This field is often used when analysing the temperature dependent coercivity for deriving microstructural parameters.
prefLabel: SwitchingFieldCoercivity
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_234a6193-f057-556f-bfcd-38efde3aafc4
elucidation: Defined by the maximum slope of the descending branch of the M-H’ hysteresis loop, with H’ the external field.
altLabel: H’sw
prefLabel: SwitchingFieldCoercivityExternal
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_613e4315-d58f-5b5d-82ce-8cb76bd1b0aa
elucidation: Piece of matter made of one or more magnetic material in form a thin film.
prefLabel: ThinfilmMagnet
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_49a882d1-9ce7-522b-91e7-3a460f25f5ac
elucidation: The change of energy with angle of the magnetization from the preferred direction is expressed with the uniaxial anisotropy constant Ea = Ku sin²(theta)
altLabel: Ku
prefLabel: UniaxialAnisotropyConstant
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_6d90a9fe-5ff3-563b-b33b-ae5a4e1a88d8
elucidation: The anisotropy can be described as uniaxial when the anisotropy energy E depends on only a single angle, the angle between the magnetization vector and the easy direction of magnetization.
prefLabel: UniaxialMagneticAnisotropy
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_70efe904-df98-5f7c-9f45-45af722dfeb7
elucidation: The uniaxial anisotropy depends on only a single angle, the angle magnetization vector and the c axis
prefLabel: UniaxialMagnetocrystallineAnisotropy
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_90e967b9-91d4-59d3-bcdc-b6d602f734cc
elucidation: counts as a function of 2theta angle obtained from X-ray diffraction
prefLabel: XRDCounts
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_368c84bc-2f5d-5d2b-a32b-9fc5a7411ee4
elucidation: the 2theta angles at which the counts are measured during X-ray diffraction
prefLabel: XRDTwoThetaAngles
Subclass of:
IRI: http://www.emmc.info/emmc-csa/magnetic_material#EMMO_38684bd3-8137-5af1-9c0d-b32bcf58fefc
elucidation: counts as a function of 2theta angle obtained from X-ray diffraction
prefLabel: XrayDiffractionData
Subclass of: